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Abstract—This paper presents a cost-effective pressure
sensing system for object detection and identification. The
pressure sensing system consists of a 27 × 27 piezoresistive
sensor array made of carbon composite Velostat, a signal
processingsubsystem for signal scanning, amplification, reg-
istration, and enhancement. A convolutional neural network
is used to classify various objects through the pressure
signals produced and processed by the sensing array. Based
on systematic characterizations and calibrations of sensing
materials and system sensitivity, three experiment setups are
established to recognize 10 objects to be detected. In series of
experiments,a pressure image data set consistingof 32264 frames of images is first assembled to represent the 10 objects.
Contrast enhancement algorithm was used to process the pressure image data set and combined with a convolutional
neural network ResNet-PI to classify the 10 objects. For pressure images collected with the preestablished three
experiment setups, an overall accuracy of 0.9854 is achieved. Compared with other systems based on Velostat sensor
array, the system demonstrated in this study features improvements in structural robustness, detection repeatability
and system reliability, suggesting its potential applications in emerging areas including human-computer interaction and
smart health monitoring.

Index Terms— Velostat, pressure sensors, crosstalk, machine learning.

I. INTRODUCTION

TACTILE sensing is one of the most fundamental sens-
ing mechanisms human body develops. In the current

world of human-computer interaction and intelligent health,
tactile signal has widely been used as inputs for information
process and control, enabling machine recognition of external
excitations. The current areas where such recognition and
interaction are enthusiastically pursued include, but not limited
to, medical [1], [2], biological [3], [4], wearable electronics
[5], [6], and robotics [7], [8]. In a particular tactile sensing
system, an electrical signal is generated as a response to
physical parameters such as temperature, pressure, vibration,
texture, friction, etc. when the object is in close contact
with the tactile sensor [1], [9]. Pressure sensors are one of
the largest categories of all sensors thanks to its diverse
sensing mechanisms and more importantly, easy device fab-
rication process thus possible low cost. Moreover, due to
their miniature size enabled by semiconductor process-based
microfabrication technologies, a variety of pressure sensors
have been adopted in wearable electronics and medical devices
where flexible sensor deployment is crucial.
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Based on their physical responses and sensing mecha-
nisms, pressure sensors can mainly be categorized into the
following types, i.e., capacitive, piezoelectric, optical, piezore-
sistive [9]–[12]. Capacitive pressure sensors feature high sen-
sitivity, low-temperature dependence, and low noise floor,
which are desirable for applications with high precision and
harsh environments [13]–[15]. Piezoelectric materials have
found promising applications in wearable electronics thanks
to their dual energy flow – can be used as both sensing and
energy generating elements. In this particular area, a variety
of triboelectric devices with self-powering capability have
been actively attempted, despite that the fabrication process
for such materials and devices are normally not compatible
with standard technologies [10]. Optical pressure sensors
have great attributes such as high sensitivity and outstanding
interference immunities. However, their bulky system con-
figurations hinder their applications in many areas where
deployment flexibility is a concern [16], [17]. Piezoresistive
pressure sensors, however, take many forms of materials and
structures for large array of applications. Because of their
overall easy fabrication, low-cost, simple signal processing
circuitry and standard data acquisition process, piezoresistive
sensors have steadily been the dominating category in pressure
sensing [18], [19]. In contrary to silicon and metal based
piezoresistive sensors and strain gains for process control
and specific pressure monitoring, some flexible piezoresistive
materials have demonstrated their great advantages in easy
deployment, which is of particular important for biomedical
and human-machine interacting systems.
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To this end, various pressure sensor arrays based on
Velostat, an elastic polymer with conductive additive with
piezoresistive characteristics, have been extensively explored
recently [20], [21]. Sundaram et al. [22] have demonstrated
tactile gloves for object-grasping robotics, in which convolu-
tional neural network (CNN) is employed to recognize the
type of objects and judge the responding gestures of the
robotics, through the signals provided by Velostat sensors
integrated in the gloves. Chen et al. [23], [24] have developed
pressure sensor insoles to assist inertial measurement unit
(IMU) for indoor human positioning. Hudec et al. [25] have
utilized Velostat pressure sensors in their mattress designed
to detect the position of the lying person to prevent bedsores.
Hopkins et al. [26] used a Velostat strip pressure sensor to
characterize the lower limb pressure in adaptive tests in
prosthesis. Niu et al. [27] evaluated athletic helmet’s comfort
and stability level based on the data acquired from a flexible
pressure sensor array in the helmet. In the above emerging
areas as customized and remote healthcare, tele-sportscare,
etc., Velostat pressure sensors have been playing an increas-
ingly important role in providing original signals for subject
monitoring.

However, compared with rigid piezoresistive sensors made
of crystals such as silicon and metals, Velostat pressure sensors
commonly suffer certain extent of performance disadvantages
such as inferior repeatability, hysteresis and nonlinearity,
which originate from some notorious defects of such poly-
meric material, including certain degree of plastic deforma-
tion, non-uniformity in material composite and texture [28].
Moreover, when used in sensor arrays, due to the plastic
characteristic of Velostat and the chaotic currents in the resistor
array, considerable crosstalk in neighboring grids has been
consistently observed [29]. Furthermore, the non-uniformity in
material composite and texture have also contributed to even
the non-uniformity in the crosstalk. The above common issues
with Velostat sensors would be challenging for conventional
signal compensation methods. Fortunately, recent advance-
ment in information fusion and processing have opened up a
new window in signal processing and enhancement [30]. Par-
ticularly, the powerful artificial intelligence, machine learning
etc. have found their applications in addressing the otherwise
tenacious problems as in the Velostat pressure sensors and
arrays.

In the work reported in this paper, a 27 × 27 Velostat
piezoresistive sensor array for object recognition through pres-
sure pattern identification is demonstrated. Three experiment
setups are first developed to ensure the accuracy, reliability
and consistency of the signal generation, data rendering and
interpretation. Through the following experiments with the
setups on systematic material characterizations and sensor
calibrations, a baseline tactile signal database is established.
Using ResNet-PI, a high-precision recognition CNN, the afore-
mentioned system issues associated with material properties
of Velostat, have been effectively tackled. The contributions
of this paper are:

1. Systematic material study on the polymer composite
in Velostat to understand the electrical and mechanical
characteristics of the conductive material. The resistivity

of the material as a function of applied pressure is stud-
ied, and the quasi-static response is also characterized.

2. Tactile sensor array design and establishment of three
experiment setups and data processing scheme for quan-
titative evaluation of the performance of the Velostat
sensor array using both electronic signals and imaging
processing. The first setup is to establish a baseline for
optimized response of the system, in which a series
of objects with the same weight but various shapes
are used for pattern identification. In the second and
third setup, quasi-static responses of the system are
characterized, with rise, fall and settling transients being
studied, respectively.

3. Based on the data obtained from the three experimental
setups, a contrast enhancement algorithm was adopted to
counteract the crosstalk effect widely exists in such sys-
tems. In the above implementation, ResNet-PI, a residual
convolutional neural network was employed for pressure
image recognition. With 10 object pressure images to be
processed, a precision of 0.9854 was observed.

The presentation of the work is as follows. In Section II, the
issues with Velostat sensors in the current related research are
briefly introduced. Based on the observations of the challenges
to be addressed, the methodology of this research is described
in Section III, followed by the presentation of experimental
results in Section IV. Some discussions of the results and
future work are given in Section V prior to the conclusion
drawn in Section VI.

II. CURRENT CHALLENGES FOR VELOSTAT SENSORS

With the increasing demand for smart life systems, Velostat,
an emerging functional material with great flexibility, is widely
used in the fabrication of piezoresistive sensor arrays. How-
ever, the current research of piezoresistive sensor array based
on Velostat has the following problems.

The past research on Velostat has been focused on character-
izations of the electrical and mechanical properties associated
with particular applications of the material. In [28] and [31],
piezoresistive sensitivity, hysteresis, repeatability, etc. have
been investigated. Some researchers have confirmed the usabil-
ity of the material in terms of hysteresis and repeatability.
In addition, other papers do not have a unified measurement
unit (Newtons; Pascals) [32]. Our research found that the
use of Pascals is an inappropriate measurement unit for the
Velostat sensor. It’s well known that various parameters related
to the deployment of Velostat material as a sensing element
are involved when such a sensing system is constructed.
For instance, when used as a force sensor where Velostat
material is made contact with certain electrodes as measuring
instrument, the changes of the Velostat sensor resistance are a
function of the following factors: Velostat material properties,
applied force and applied time, the contact area between
the measuring instrument and the Velostat sensor, the area
of the intersection of the conductive wire, and the relative
position of the center of the measuring instrument and the
intersection of the conductive wire, etc. However, thus far,
not too much research has been conducted on the relations
between the resistance of Velostat sensor and the applied
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pressure and applied time from the application perspective of
object recognition. In our research using the Velostat sensor as
the piezoresistor, the relative position of the element and the
force measuring instrument is relatively static - the probe of
the force measuring instrument is always located in the center
of the measured element, which allows us to maintain other
conditions unchanged to characterize the pressure response of
the sensing element. Based on our systematic studies on the
piezoresistive responses of Velostat, including the sensitivity
and resistance changes under different pressures and times,
we have proposed appropriate experiment setups with specific
object weight to obtain higher recognition accuracy.

In design the above particular experiment setups for
our purpose, we have addressed some practical issues
in previously reported applications of Velostat sensors.
Dzedzickis et al. [32] reported the effects of surface roughness
of new and used Velostat materials, as well as the load-
ing, on the stability of sensor responses. Other researchers
[26], [33] have investigated the overall time dependence of
the output voltage of the Velostat sensors. However, none
of the above research has drawn a conclusion as when data
acquisition should be performed after the force or pressure is
applied to the sensor for reliable image construction.

This happens to be one of the most critical influencing
parameters in establishment of a pressure image database.
On one hand, if the collection time is too short, a large
amount of pressure image information under different con-
ditions will be lost. On the other hand, if the collection
time is too long, redundancy occurs with large number of
duplicated data in the dataset, which will reduce the processing
resources. We investigated this issue by characterizing the data
acquisition system of the Velostat sensor array by examining
the transient response of the sensor resistance systematically.
Comprehensive studies on steady-state values, variance, rise,
fall, and settling transients in unloaded, loaded, and released
states of the sensor array resistance are conducted to find the
optimal responses of the sensor array. An experiment setup
and measurement scheme for optimization of data collection
and release time has been established to ensure the diversity,
richness and universality of pressure image data sets.

The crosstalk is a critical issue that affects the image
recognition accuracy. It originates from both mechanical and
electrical responses of the sensor. Mechanical crosstalk is
caused by the non-ideal force diffusion of the flexible material
under pressure [34]. Due to the length limit of the manu-
script, electrical crosstalk will be focused in this study, while
mechanical crosstalk being left as one of our future works as
mentioned in Section V. Electrical crosstalk is a widespread
problem in resistive sensor arrays, which usually causes loss of
accuracy [35]–[37] and ghosting [38]. The electrical crosstalk
can be divided into two types, i.e., electrical crosstalk Type A
and Type B. The Type A crosstalk is caused by the random
current flowing through the Velostat resistance in related areas
in the sensor or sensor array. Particularly, for the sensor
structure used in this paper, this type of crosstalk is related
to the surface resistance of the Velostat material. Based on
the observation that compared with the bulk cross-sectional

resistance that is employed for pressure sensing, the resistivity
of the surface layer is relatively low in thickness direction
(<31,000 ohms/sq.cm; www.adafruit.com/product/1361), the
sensing error caused by this resistance element is relatively
small thus can be neglected. Detailed study in the effect of
such surface resistance will be reported in future. Electrical
crosstalk type B is due to the fact that current always flows
through a path with smaller resistance, which is a critical
element in determination of performance of the sensor in this
study. The proposed experimental setup aims at addressing
this crosstalk particularly. The cause of the specific Type B
electrical crosstalk is that when calculating the resistance of
a target piezoresistive sensor element (cross spot), not only
the current flows through this target piezoresistive sensor, but
also through the adjacent sensors. It’s equivalent to a parallel
connection of several piezoresistive sensors. Many researchers
have proposed many solutions [39], [40] in this regard.
Hidalgo-López et al. [29] add additional calibration rows and
columns to the original resistance array. Suprapto et al. [41]
used diodes to shield the reverse current of each sensor.
Yet, most of the methods are inadequate in ensuring needed
flexibility and signal-to-noise ratio (SNR) of resistor arrays.
To address this challenge, we choose a “zero potential method”
in which operational amplifiers are used as auxiliary cir-
cuits for SNR boost. Consequentially, the contrast of the
pressure image can be enhanced to suppress the crosstalk
effect.

In addition to the physical sensing element, image process-
ing is also essential for the force and pressure image system
demonstrated in this work. Most of previous researchers have
used conventional linear scaling (normalized) scheme in gen-
eration of pressure images [22], [42], in which the low SNR
caused by crosstalk and electrical noise, along with pressure
signal spikes, cannot be effectively managed in the algorithm.
Using CNN to recognize and classify tactile images has proven
to be an effective method [43]–[45]. For real-world tactile
perception applications such as identification and analysis of
grasping, sitting, gait, etc., classification tasks are dynamic
and continuous [52]–[56]. Although it could be extended to
series image data sets processing, the purpose of this paper
is to develop solutions based on the particular characteristics
of the Velostat pressure sensor array we have demonstrated,
and some major interferences such as crosstalk. The Velostat
sensor array combined with the CNN framework provides
a feasible solution and mechanism for future enhancement
and applications. Current work reported in this paper mainly
focuses on fundamental mechanism of the sensor array - a
smart cushion that has been implemented to realize human
sitting posture recognition [57]. In our design, CNN based
contrast enhancement is used to counteract the influence of
crosstalk and electrical noise, and eliminate the signal spikes.
According to the size and resolution of the pressure images,
ResNet-PI, a modified version based on ResNet18, has been
demonstrated in this paper to recognize objects. Totally 12 dif-
ferent contrast enhancements (3 kinds of enhancements, 4 pos-
sible coefficients for each enhancement) using ResNet-PI have
been implemented with the best accuracy.

Authorized licensed use limited to: Purdue University. Downloaded on December 02,2022 at 09:43:24 UTC from IEEE Xplore.  Restrictions apply. 



YUAN et al.: VELOSTAT SENSOR ARRAY FOR OBJECT RECOGNITION 1695

Fig. 1. SEM image of Velostat material at 5000 times magnification,
(a) without pressure and (b) with pressure.

III. METHODOLOGIES

A. Velostat Material
Velostat material is flexible, stretchable, light and thin

(0.1mm thick), and low in price (11 inches by 11 inches
material price is $ 4.95). As a polymer composite material,
Velostat consists of carbon-impregnated polyethylene, a resis-
tive material based on quantum tunneling and percolation
[32], [46]. Through scanning electron microscope (SEM), the
changes of carbon particles (white area) and gap (black area)
under pressure can be observed, as shown in Fig. 1 is the
surface of Velostat with a magnification of 5000x. When no
pressure is applied, the gaps between the polymer clusters
measure an average value of 1 micron. Under pressure, the gap
is statistically reduced to approximately 0.6 microns. When
pressure is applied, the gap becomes smaller, and the effective
distance between the conductive elements decreases, thus the
overall conductivity of the material increases.

According to the model for conductive polymer composite
materials established by Zhang et al. [47], the relative resis-
tance of the composite material at any applied time t of
pressure can be expressed as:

R (t)

R0
= f (σ, D, θ, ϕ, ε0, ψ, n) (1)

where R (t) is the instantaneous resistance of the composite
material at applied time t; R0 is the original resistance,
σ is the applied pressure, D is the nominal diameter of
the filler particles, θ is the filler volume fraction, ϕ is the
potential barrier height, ε0 is the original strain, ψ and n
are constants related to creep behaviors in the material. When
these factors are fixed, the relative resistance is only related
to t , and the relative resistance decreases as t increases [47].
In our experiment, the applied pressure σ which as the object
weight also needs to be taken into consideration. We fix
other factors unchanged and consider σ and t as independent
variables separately. At the same time, the resistance of the
polymer composite material R rather than the relative resis-
tance is studied as a dependent variable. Equation (1) can be
rewritten as:

R (σ ; t) = f (σ ; t|D, θ, ϕ, ε0, ψ, n) (2)

Velostat is used as the piezoresistive resistor in our sensor
array design. Except for pressure, there are similarities such
as tension and mechanical bending will also decrease the

Fig. 2. Velostat cross-sectional schematic diagram, (a) normal state;
(b) with pressure; (c) tension applied; and (d) mechanical bending.

Fig. 3. Evaluation method of Velostat resistance sensitivity, (a) push pull
force gauge and (b) measuring circuit.

resistivity of Velostat. Fig. 2 shows a schematic diagram of
the changes in the gap (black area) and conductive carbon
particles (white dot) inside the Velostat when pressure, tension,
and mechanical bending are applied to Velostat.

B. Test Setup
In order to test the influence of the applied pressure σ and

applied time t on the Velostat resistance, a setup with a push-
pull force gauge (Max Load 500 N Stand Tester) was designed
in this research, as shown in Fig. 3 (a). The setup features
a single-input single-output (SISO) characterization scheme,
as illustrated in Fig. 3 (b).

The resistance of Velostat was calculated using Arduino
Uno and breadboard. Fig. 3 (b) shows the schematic diagram
of the circuit. The basic principle is a voltage divider circuit.
The resistance value of Velostat can be calculated by:

RV elostat = RK nown
Vout

Vcc − Vout
(3)

where RV elostat is the resistance value of Velostat, RK nown

is the known resistance value, Vout is the output voltage,
which is the voltage converted from the value read by the
Arduino analog pin, and Vcc is the power supply voltage.
Push Pull Force Gauge is used to apply different pressures and
different times, and the results are presented in Section IV-A
and Section IV-B.
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Fig. 4. The schematic circuit diagram of the sensor array uses 27 shift
registers (4 chips) and 27 analog multiplexes (4 chips) to select the
rows and columns to be read. Each row and column have a grounded
operational amplifier to reduce the impact of crosstalk.

C. Sensor Array Fabrication
In order to use the piezoresistive resistance material Velostat

to obtain the pressure information of the object. We have
fabricated a tactile sensor array with 27 rows and 27 columns.
A total of 729 sensors are composed of piezoresistive resis-
tance Velostat. We chose the zero-potential method [39], [48]
based on electrical grounding. This method does not require
the insertion of diodes or crystals to affect the sensor array’s
flexibility, and the impact on SNR is minimal. Furthermore,
use shift registers and analog multiplexers to scan the entire
sensor array row by row to obtain each sensor array point’s
value. Each element in the sensor array is a pixel on the
generated pressure image. Fig. 4 shows the circuit structure
of this method.

As noted in Fig. 4, R(i, j) is the sensor element in the
i th row and j th column of the piezoresistive resistance sensor
array made by Velostat. Velostat sensor array has a seven-layer
structure, and it is a symmetrical structure. The top and seventh
layers are protective layers. It is covered with a 0.0127 mm
PVC protective film. This protective film is transparent, soft,
thin, and cheap. It not only maintains the robustness of the
sensor array, but also does not weaken the pressure signal of
the object. The second and sixth layers are adhesion layers,
using 0.236mm adhesive transfer tape acrylic to ensure the
firmness of the protective layer and the relative position of
the conductive thread and Velostat. The third and fifth layers
are the column conductive and row conductive layers, using
conductive threads made of stainless-steel fibers, which are
soft, easy to fabricate, and have low resistivity. The fourth
layer is Velostat material. The structure diagram of the sensor
array is shown in Fig. 5.

The remaining signal processing circuit consists of oper-
ational amplifiers, shift registers, analog multiplexers, and
Arduino Nano. Arduino Nano scans each element’s value by
switching rows and columns, and after digital signal process-
ing, it sends each element’s value to Processing to generate a
picture. Fig. 6 shows the PCB and sensor array of the signal
processing circuit. To facilitate the second production in the
later stage, the DuPont line is used as the connecting line.

Fig. 5. The schematic diagram of the sensor array, where blue is the
protective layer, yellow is the adhesion layer, the silver thread is the
conductive thread, and the black is Velostat.

Fig. 6. Sensor array hardware system, (a) the top view of the PCB and
(b) the overall hardware circuit used to collect object pressure information
includes the PCB and the sensor array.

D. Quasi-Static Response
Each element of the Velostat sensor array corresponds to

each pixel on the pressure image. Due to the non-necessity
and inaccuracy of the secondary resistance calculation, here
we directly use the reading of the Arduino Nano as the value
of the pixel, which is called the conductance G. For applied
pressure σ and applied time t that affect the Velostat sensor
array resistance in (2), it is more appropriate to study the
relationship between σ and resistance, and the relationship
between t and conductance. Since the Velostat sensor array
resistance has a higher dynamic range than the conductance,
the curve of σ and resistance can more realistically reflect the
changing trend. Applied time t as a key factor of generating
pressure images, directly affects the diversity and quantity of
pressure image data sets, so the curve of t and conductance is
more suitable for discussion.

Quasi-static response is defined to express the relationship
between t and conductance G. According to our experience,
during the process of applying pressure to the Velostat, the
increase rate in the element conductance will slow down.
After a long enough time, the element conductance will reach
a steady state. First, we define the steady-state conductance
values in three states:

Gstate = 1

τ

⎛
⎝ Tstate∑

i=Tstate−τ+1

Gstate (i)

⎞
⎠

for state ∈ {unl, load, rel} (4)

where state represents three possible states. Gunl represents
the conductance in the unloaded state, Gload represents the
conductance in the loading state and Grel represents the
conductance in the release state. Tstate represents the total time
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Fig. 7. Conductivity change curve of continuous collection of unloaded
Tunl = 5 minutes, then loaded for Tload = 30 minutes and then
released for Trel = 30 minutes. The green, red and blue curves represent
the conductance values in the unloaded, loaded and released states,
respectively. The green, red and blue shaded parts represent the steady
state of unloaded, loaded and released states for a unit time length τ .

of a single state continuously collected, for each state we use
same formula, but Tstate is different for each state. Gstate(i)
represents the i -th conductance value in the continuously
collected element conductance. Due to electrical noise and
disturbance, the conductance is in an oscillating state. The
steady-state value is obtained by averaging the last unit time
length τ in the duration of each state. The green, red and
blue shaded parts of Fig. 7 show the steady state of unloaded,
loaded and released states.

Whether the element undergoes plastic deformation before
and after loading is also concerned. The difference di f f
between the unloaded state and the released state is defined
as:

di f f (%) =
∣∣Gunl − Grel

∣∣
Gunl

× 100% (5)

We are interested in how long it takes for an element’s
conductance to reach an acceptable value. Three quasi-static
responses are defined to show the performance of the sensor
array conductance. Without loss of generality, the acceptable
conductance value is a percentage of the steady-state value,
noted by μ. In our experiment, μ = 80% (or 90%) is used as
the percentage. Rise transient tr of the element conductance
from the start of loading until it rises to the acceptable
conductance value is defined as:

tr = argmin
i∈Tload

Gload (i) ≥ μload
(
Gload − Gunl

)+Gunl (6)

Similarly, fall transient t f of the element conductance from
the start of release until it falls to the acceptable conductance
value is defined as:

t f = argmin
i∈Trel

Grel (i) ≤ Gload − μrel
(
Gload − Grel

)
(7)

tr and t f as the quasi-static response we are most concerned
about are shown in Fig. 7. Stability is the relative difference
between the conductance value and the steady-state value is
less than a percentage, noted by δ. In our experiment, δ = 10%

is used as threshold. Settling transient ts is defined as the
element conductance from the start of the state to reach and
stabilize at δ of Gload or Grel :

ts = argmin
i∈Tstate

(Gstate (i)− Gstate)

Gstate
≤ δstate

f or all ts ≤ i ≤ Tstate (8)

The results of quasi-static response are presented in
Section IV-B.

E. Contrast Enhancement
Since the piezoresistive material Velostat can be regarded

as a resistance in both the unloaded and loaded state, the con-
ductance of the sensor array is non-zero even in the unloaded
state. And due to the fabrication differences of the sensor
array, electrical noise, and different element positions, the
initial conductance of each pixel is different. In order to
initialize the bias on each pixel and prevent the conductance
from becoming negative, the conductance of each pixel has
been continuously collected for a period of time in advance
to calculate the mean and standard deviation. Each pixel’s
original conductance subtracts mean to initialize the bias and
then adds 4 standard deviations to prevent it from becoming
negative.

G� (i) = G (i)− Mean + 4Std (9)

where G (i) is the original conductance matrix of the sensor
array at the i -th moment. G� (i) is the initial conductance
matrix after the bias is eliminated at the i -th moment. Mean
and Std are respectively the mean and standard deviation of
the conductance matrix collected for a period of time (1 hour)
in advance.

After obtaining the initialized conductance matrix
through (9), the next step is to enhance the contrast between
the signal and noise in the pressure image. We assume
that the output span of pixel conductance is divided into
low output span and high output span. As the pressure
increases, the pixel conductance increases and moves from
low output span to high output span. At the same time, the
distribution of electrical noise remains unchanged. What
we can expect is that there is a high amount of electrical
noise and a low amount of signal in the low output span.
Conversely, there are high amount signal and low amount
noise in the high output span. The essence of the designed
contrast enhancement is to increase the high output span
while maintaining or weakening the low output span. We have
selected three candidate functions. One Boolean function
is the thresholding and two nonlinear scaling functions
are power and exponential. Thresholding is our priority as
the simplest way to increase the contrast. The formula for
thresholding can be expressed as:

G��
thld (i) =

{
255, G� (i) ≥ γ

0, G� (i) < γ
(10)

where G��
thld (i) is the threshold contrast enhanced conductance

matrix of the sensor array at the i -th moment. γ is a custom
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Fig. 8. Ten objects used to collect object pressure information, the order
from left to right and top to bottom is Pepsi; Perrier; one; two; iron block;
seven; three; five; nine; eight. Since four, six and nine are easily confused,
only one of them is selected. Pepsi, Perrier and iron block collect the
bottom pressure image in the direction shown in the figure. Seven LEGO
numbers are flipped to collect pressure images of the numbers side.

threshold coefficient to be tested for the best result. Thresh-
olding needs to traverse each pixel in G�, if the pixel value
is greater than γ , it is signal, and if it is less than γ , it is
noise. Power and exponential are used as common nonlinear
scaling functions, and they directly calculate G�. The formula
of power can be expressed as:

G��
power (i) = G�α (i) (11)

where α is a custom power coefficient to be tested for the best
result. The formula of exponential can be expressed as:

G�
exp (i) = eβG�(i) (12)

where β is a custom exponential coefficient to be tested for
the best result. The results from these 3 kinds of contrast
enhancements are presented in Section IV-C and Section IV-D.

F. Convolutional Neural Network
Convolution neural network (CNN) has been widely used

in computer vision for object recognition. In our experiment,
we also apply CNN to pressure images for the CNN can
extract feature vectors in the pressure image to calculate the
probability of an image’s category for matching. We have
selected 10 objects for testing, with 7 objects are distinguish-
able shape numbers made by LEGOs, and 3 objects from
daily life, including an iron block, a Pepsi can and a Perrier
bottle, as shown in Fig. 8. These objects were chosen because
of their rigidity, distinguishable contours, and low surface
area characteristics. Combining three experimental setups, the
pressure image data set was collected by placing these objects
at different positions in the Velostat sensor array at different
rotation angles.

In order to use CNN to classify these objects, a residual
neural network based on ResNet18 [49] was developed. Fig. 9
shows the block diagram of the modified version of ResNet
for Pressure Image (ResNet-PI) in this work. To make the
neural network more suitable to the collected pressure images

Fig. 9. The ResNet-PI block diagram used in this paper. ResNet-PI has
3 ResNet layers, and each ResNet layer has two basic blocks (dashed
blocks). The ResNet layer is distinguished by different fill colors (blue,
red, yellow), and down-sampling (dashed line) is required between the
two ResNet layers. In order to save space, only the first basic block is
drawn completely. Each basic block is composed of convolution filter
(Conv), batch normalization (BaN) and rectified linear unit (ReLU). The
two layers are connected by skip layer. Finally, the output of the ResNet
layer performs the average pooling (Avg Pool) operation and uses Dense
to output the label of the object.

(with a low resolution of 27 × 27 × 1) in this work, a
simplified ResNet-PI scheme modified from ResNet-18 is
adopted to reduce the number of convolutional layers and
CNN parameters for a more lightweight CNN architecture.
It is implemented in TensorFlow. To detail the configuration,
the size of the initial convolutional layer is set as 3 × 3, the
stride as 1, the number of initial filters as 16, and the total
number of layers as 14. With such a lightweight CNN and
low-resolution image data set framework, this configuration
not only guarantees overall performance sufficient to our
requirements, but also provides a potential real-time solution
for other dynamic tactile applications. The initial learning rate
is 10−3, the learning rate becomes 0.1 times the initial learning
rate after every 100 epochs of training. A total of 200 epochs
are trained. The batch size is 32, and the selected loss function
is classification cross-entropy.

IV. EXPERIMENTS AND RESULTS

To obtain a high-quality pressure image data set, we con-
ducted experiments on two important parameters object pres-
sure σ and applied time t that affect the resistance of Velostat.
For σ , the resistance sensitivity of the SISO sensor and a
single element in the sensor array were measured respectively,
and the ideal object weight was found. For t , the sensor
array quasi-static response was measured, and the appropriate
collection time and release time were found. These three
experiment setups were used to build the original pressure
image data set. Three kinds of contrast enhancements are used
to process the original pressure image data set, combined with
ResNet-PI to find the best accuracy Contrast Enhancement and
recognize 10 objects.

A. Resistance Sensitivity
For the research of resistance sensitivity, the influence of

applied time t should be eliminated as much as possible.
The recording time is fixed to be one-second delay after the
pressure is applied. To reduce the jitter and the inaccuracy
of delay recording, the experiment was repeated three times
and the measurements were averaged. Moreover, there was an
interval of 1 hour between each experiment to restore Velostat
to its initial state.
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Fig. 10. Resistance vs. pressure curve, (a) actual resistance and effec-
tive resistance comparison, the two exponential curves fitting of the actual
resistance, and the actual resistance intersection point is 65 Newtons;
(b) Effective resistance with pressure curve, the two exponential curves
fitting of the effective resistance, the effective resistance intersection
point is 55 Newtons.

Since the resistance sensitivity of the sensor array is a direct
factor in generating the pressure image, a single element in
the sensor array is more worthy of attention. The resistance
of a single element on the sensor array will be affected by
crosstalk, and its resistance will be greatly reduced. We define
the resistance of a single element in the sensor array as the
effective resistance, and the resistance of the SISO sensor that
is not affected by crosstalk as the actual resistance. The actual
resistance and the effective resistance are compared to observe
the effect of crosstalk on the sensor array. Using the circuit
shown in Fig. 3 and (3), pressure is applied to Velostat sensor
cyclically, to obtain the relation of the actual resistance and
the effective resistance versus applied pressure σ .

Fig. 10(a) shows that as σ increases, the actual resistance
decreases exponentially in two exponential curves, the first
curve will be faster and the second curve will be slower.
The actual resistance intersection of these two exponential
curves is 65 Newtons, which means that the actual resistance
of Velostat sensor is more sensitive to pressures less than
65 Newtons. At the same time, under the same pressure,
the effective resistance is almost equal to one tenth of the
actual resistance. The huge reduction in the sensor array
sensitivity caused by crosstalk will be eliminated by contrast
enhancement, and the result are presented in Section IV-C and
Section IV-D.

Fig. 10(b) shows the same properties of effective resistance.
When σ increases, the effective resistance decreases exponen-
tially in two exponential curves, the intersection is 55 New-
tons. According to these 2 intersections, the ideal weight of
the object is around 60 Newtons. If the object is too light to be
recognizable, additional weight (up to 60 Newtons) needs to be
applied to make sensor array resistance fall to a recognizable
value. This is leads to the first experiment setup.

Experiment Setup 1 (Object Weight): The ideal object weight
is around 60 Newtons for high accuracy.

It is worth noting that although in our experiments, the
characteristic of the faster exponential curve is not used as one
of the experimental setups, it is a versatile characteristic that
deserves attention. Although the selected 10 rigid and easily
distinguishable objects will bring higher accuracy, the pressure

TABLE I
PARAMETER SETTING OF SENSOR ARRAY

PERFORMANCE MEASUREMENT

of the objects is evenly distributed on several elements due
to their uniform texture. If due to uneven texture or objective
pressure distribution, this may bring more achievable functions
to the Velostat sensor array, which will be one of the future
works.

B. Quasi-Static Response
According to experiment setup: object weight, when the

selected object weight is determined and the object shape is
independent, we turn our attention to the applied time t , which
is the quasi-static response of the Velostat sensor element.

To obtain the steady-state element conductance in the three
states of unloaded, loaded, and released, unit time τ needs
to be set. The difference between the mean for 5 minutes
and 60 minutes of the unloaded state is less than 0.1%.
So τ = 5(mins) is considered to be an appropriate value,
short enough not to waste time and enough to reflect the
steady state. The unloaded state only records a unit time length
Tunl = τ = 5(mins). Taking into account the situation of long-
term use, the loaded and released states collect the total time
length is Tload = Trel = 30(mins) to observe their changes.
In the long-term pressure application, there will always be a
period of slow rise in conductance, which is unnecessary for
collecting pressure image data sets. Therefore, compared to the
released state, set μload = 80% to eliminate the interference
of the slow rise of the loaded state. Due to the low resolution
of Arduino Nano (8-bit ADC), the conductance will oscillate
even in steady state. This kind of oscillation is acceptable, and
what we care about is whether there is a general tendency for
the conductance. δstate = 10% is set to eliminate the influence
of oscillation, and the main measurement is when the general
trend of change ends. The settings of these parameters are
shown in TABLE I.

Using the setup shown in TABLE I, four pixels of index
(5,1), (10, 1), (15,1) and (20,1) were tested under a force
of 100 Newtons. 65-minute pixel conductance change curve
shown in Fig. 11 and the performance measurement results
shown in TABLE II were obtained.

To ensure the diversification of the data set, a lower sam-
pling rate and appropriate sampling time are essential. The
lower sampling rate is set to 1 sample/sec in our experiment.
Appropriate sampling rate needs to ensure the number and
difference of pressure images in the data set, which can
be determined by tr . Fig. 11 and TABLE II show that in
the first tr = 10 seconds, the conductance quickly rises to
an acceptable value. ts−load of each element is greater than
1000 seconds, which proves that the conductance rises slowly
under long-term pressure, and this rise is small enough to be
ignored. In order to avoid repeated pressure images and the
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Fig. 11. Conductance change curve of four pixels in three states. The
green, red and blue curves are unloaded, loaded and released states
respectively.

TABLE II
PERFORMANCE OF 4 PIXELS CONDUCTANCE UNDER

UNLOADING, LOADING AND RELEASING STATES

element rises to an acceptable value, the collection time is
defined as 10 seconds to ensure the diversity and universality
of the pressure image data set. Based on these facts, the second
experiment setup is proposed as the following.

Experiment Setup 2 (Collection Time): Only the first 10
seconds of pressure images should be continuously recorded.

In order to ensure that the pressure images are collected with
the same initial conditions each time, it is essential to release
after the sensor array is used. The release time is usually
specified by td and ts−rel in Fig. 11 and TABLE II, t f is less
than 5 seconds, and ts−rel is less than 100 seconds. In order
to reduce unnecessary waste of time, the pressure images are
collected for 10 seconds (experiment setup: collection time)
and then perform a short release. Such a collection action
lasted 30 minutes and then perform a long release. This short
release is given by td , and the long release is given by ts−rel .
We slightly extend both release transient td and ts−rel to ensure
that each element on the sensor array is released enough.
The short release time is defined as 5 seconds, and the long
release time is defined as 100 seconds. The difference between
unloaded and released is given by di f f . It can be seen that
the difference of each element is less than 1%, which shows
the excellent repeatability of the sensor array. So, the third
experiment setup is stated below.

Fig. 12. The curves of the three activation functions and the areas
of noise and pressure information. The curves of the three contrast
enhancements and the areas of noise and pressure information. The
black shadow is noise and the red shadow is the signal.

TABLE III
VELOSTAT SENSOR ARRAY CHARACTERISTIC PARAMETERS

Experiment Setup 3 (Release Time): After continuous col-
lection of images each time, 5 seconds are required to release.
After 30 minutes of collection, an additional 100 seconds must
be released.

The entire system, including the sensor array and signal
processing subsystem, only costs approximately 45 US dol-
lars and demonstrates considerable characteristic parameters,
as shown in TABLE III.

Comprehensive characterization of the Velostat sensor array
has been conducted prior to signal processing of the acquired
pressure images in the three experiment setups. The following
Sections IV-C and IV-D detail the method and procedure
foraccuracy improvement through contrast enhancement and
appropriate ResNet-PI classification.

C. Contrast Enhancement
In order to apply contrast enhancement to pressure images,

we first need to initialize the pixel conductance. The readings
for 1 hour are collected to calculate Mean and Std in (9),
only 9 pixels conductance are shown here for discussion.
TABLE IV shows the detailed information of these 9 pixels
conductance.

Although the low variance and standard deviation (less than
1) show that the sensor array is very stable in the unloaded
state. But due to sensor fabrication and electrical noise, each
pixel conductance mean on the sensor array is unevenly dis-
tributed in the interval 136 to 149. This uneven distribution and
high bias will affect the sensitivity and recognition accuracy
of the pressure image. Equation (9) is used here to subtract
bias and initialize the sensor array. After getting the initialized
pressure image, Equation (10) is used to enhance the contrast
of the pressure image. According to original pressure image
data set, the initialized pressure image conductance changes
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TABLE IV
AVERAGE, VARIANCE AND STANDARD DEVIATION

OF 9 PIXELS CONDUCTANCE

TABLE V
EVALUATION FOR DIFFERENT CONTRAST

ENHANCEMENTS AND COEFFICIENTS

from 0-5 (low output span) when it is unloaded, and it changes
from 5-15 (high output span) when it is loaded. In order to
compare the detection threshold, power and exponential, these
three alternative contrast enhancements. CNN is trained for
every possible coefficient of each enhancement to compare
their accuracy, as shown in TABLE V.

D. ResNet-PI Training and Classification Results
We collected 8066 frames of original pressure images

of 10 objects. Following experiment setup: object weight,
these 10 objects have been added with additional pressure
to reach 60 Newtons. When collecting pressure images,
follow the collection time in experiment setup: collection
time and the release time in experiment setup: release time.
Besides, the original data set was expanded four times by
rotation and translation. The whole data set has 32264 frames
of pressure images, which is divided into the training data
set (22584 frames) and test data set (9680 frames) at a
ratio of 7:3.

To investigate the effectiveness of the 3 contrast enhance-
ment methods discussed in Section IV-C, ResNet-PI is used
to train pressure images processed by these three contrast
enhancements. To verify the universality, repeatability and
reliability of the test results, as well as a discussion about the
impact of the surface roughness of new and used materials
on accuracy, we have set two evaluation criteria. The first
evaluation criterion is the Original Accuracy, which is obtained

Fig. 13. The training model ResNet-PI, under Exponential and β = 0.4,
(a) 25 randomly selected pressure images that have been enhanced;
(b) confusion matrix; (c) model accuracy curve; (d) model loss curve.

by predicting 9680 frames of test data set by TensorFlow. The
second evaluation criterion is Verification Accuracy. On the
second day, we re-collected the pressure images of 10 objects,
2 frames for each object, 20 frames in total, which were used
by TensorFlow predicting the re-collected 20-frame validation
data set. We use the similarity between the Original Accuracy
and the Verification Accuracy to evaluate whether the Original
Accuracy is credible, and name it as Confidence

TABLE V shows that after three alternative contrast
enhancements are performed on the original pressure image
data set, the accuracy and confidence of ResNet-PI classi-
fication. We have selected some representative coefficients
to show changes in accuracy and confidence. Thresholding
enhancement coefficient γ increases, the low output span
becomes larger and the high output span becomes smaller.
Thresholding enhancement is too strong to completely reject
low output spans and lose some signal information. Power
enhancement characteristics are the same as the Exponential,
but the Power enhancement is too much affected by α and
cannot be easily determined. Also, Power enhancement will
not only enhance weak signals to a limited extent, but also not
as steep as the Exponential enhancement when strong signals.
Exponential enhancement is the best contrast enhancement,
with the best accuracy and confidence to be used in this design.
Under Exponential enhancement and β = 0.4, the accuracy
of the model reached 0.9854. Fig. 12 shows the curves of
the three contrast enhancements at the best accuracy. It can
be seen that different enhancements have different abilities to
shield noise and activate pressure information.

A few pressure images obtained by Exponential enhance-
ment with β = 0.4 are shown in Fig. 13 (a). It can be seen that
the objects pressure characteristics are clearly visible even in
the case of low resolution and noise. The confusion matrix is
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TABLE VI
COMPARISON OF ACCURACY BETWEEN RESNET-PI AND

4 OTHER CLASSIFICATION ALGORITHMS

shown in Fig. 13 (b), which can be seen that most of the errors
come from similar object pressure images. The main reason
may be that the resolution of the fabricated sensor array is
not high (the distance between the two pixels is 5mm), and
the edge features of object may be in the blank area between
two elements. Fig. 13 (c) and Fig. 13 (d) show the accuracy
curve and loss curve of the model, respectively. The obvious
convergence and close match of the processed data to the
training model validate that our model parameter settings are
appropriate for such application.

To highlight the advantages of the ResNet-PI we designed,
TABLE VI compares several common image classification
algorithms. It can be seen that the pressure image data set
generated by our Velostat sensor array has distinguishability,
which can work on multiple popular CNNs and achieve
valuable accuracy. Also, it can be observed that with a much
simplified and lightweighted scheme configured to our Velostat
sensor array, ResNet-PI demonstrates a remarkable accuracy
that’s comparable to some other popular CNNs. The perfor-
mance suggests its great potential in many other dynamic
tactile applications where real-time classifications are highly
desired.

V. DISCUSSIONS AND FUTURE WORK

A. Crosstalk
Electrical crosstalk can be resolved by contrast enhance-

ment, which has been discussed in this paper. However,
mechanical crosstalk is also one of the important causes of low
contrast pressure images. Mechanical crosstalk is the mechan-
ical deformation caused by the pressure of the object placed
on the Velostat is transmitted to the adjacent elements and the
resistance of the surrounding elements decreases at the same
time. This mechanical deformation and force transmission
effect is caused by the undesirable mechanical properties of
the Velostat material. The sensor array can be separated into
independent elements to suppress electrical crosstalk and avoid
mechanical crosstalk, but this method increases the difficulty
of production and may weaken the entire system’s robustness.
which is one of the future works.

B. Adaptive Coefficient β
Although in this paper we tried several contrast enhance-

ments to find the function and coefficient with the best
accuracy, but under the influence of factors such as different
fabrics sensor arrays, objects with different shapes, different
quality pressure image data sets, etc., the optimal value of
coefficient β may be different for each sensor array. One of
our future work is to develop a method of adaptive adjustment
of the coefficient β, considering that the factors related to

the coefficient β are output span, average value, variance,
peak value and other mathematical quantities related to the
distribution of red and black shadows in Fig. 12.

VI. CONCLUSION

In this paper, an object recognition system based on Velostat
sensor array is designed to collect and process object pressure
image data sets. The system includes a Velostat piezoresistive
sensor array, a signal processing subsystem and an image
processing method for contrast enhancement. The parameters,
such as pressure σ and applied time t that affect the Velostat
material and sensor array output are discussed. According
to the resistance sensitivity and quasi-static response, three
experiment setups are developed, including object weight,
collection time and release time, which can increase the
universality, repeatability and reliability. ResNet-PI was devel-
oped to recognize and classify 10 object pressure images,
and 3 contrast enhancement methods were investigated to
process the pressure image data set. ResNet-PI achieves the
best recognition accuracy of 0.9854 with exponential enhance-
ment and has excellent properties. In summary, through thor-
ough characterization of Velostat material and sensor arrays,
we have demonstrated that such sensor array can be used for
generation of reliable pressure images. When combined with
an appropriate CNN, the system can be used for human activity
recognition and monitoring with considerable accuracy. It can
be anticipated that with added recurrent neural networks for
time correlation processing, the system presented in this paper
can be readily extended to more dynamic tactile applications
where real-time pattern recognitions are vital.
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