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Abstract

Federated learning (FL) has become a cornerstone in decentralized learning, where,
in many scenarios, the incoming data distribution will change dynamically over
time, introducing continuous learning (CL) problems. This continual federated
learning (CFL) task presents unique challenges, particularly regarding catastrophic
forgetting and non-IID input data. Existing solutions include using a replay buffer
to store historical data or leveraging generative adversarial networks. Nevertheless,
motivated by recent advancements in the diffusion model for generative tasks, this
paper introduces DCFL, a novel framework tailored to address the challenges of CFL
in dynamic distributed learning environments. Our approach harnesses the power
of the conditional diffusion model to generate synthetic historical data at each
local device during communication, effectively mitigating latent shifts in dynamic
data distribution inputs. We provide the convergence bound for the proposed CFL
framework and demonstrate its promising performance across multiple datasets,
showcasing its effectiveness in tackling the complexities of CFL tasks.

1 Introduction

Federated learning (FL) has emerged as a prevalent decentralized learning paradigm, allowing training
of a global model through interactions with distributed clients while maintaining the privacy of their
local data [1, 2]. Most FL frameworks operate under the assumption that the client datasets at each
client remain static throughout extensive learning cycles and iterations. However, this assumption
does not align with the dynamic nature of real-world scenarios [3, 4]. The global model trained
on such fixed datasets often fails to adapt effectively to the constantly evolving real world [5].
Furthermore, in real-world scenarios, clients often encounter new environments, objectives, and tasks
– an aspect of adaptability that conventional FL frameworks have not yet fully addressed.

Continual learning (CL) methods were proposed to handle the phenomenon of catastrophic forgetting,
where historical data may become inaccessible due to privacy regulations or storage constraints [6].
These methods were proposed that focus on developing systems capable of continuously learning
from new tasks without erasing previously acquired knowledge. Classical CL scenarios can be
broadly categorized into three types, ranging from task incremental learning (TIL) and domain
incremental learning (DIL) to class incremental learning (CIL) [7]. However, these CL scenarios
may face broader and more diverse challenges in the context of FL, as it is essential to consider
cross-client scenarios and the non-IID data distribution among clients.
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We aim to address the challenges of continual federated learning (CFL) tasks in practical settings.
Specifically, in CFL, learning is decentralized across multiple heterogeneous devices and is coor-
dinated by a central server, where devices encounter new data and tasks over time. This poses
challenges in handling both catastrophic forgetting issues induced by timely-shifted data distribution
and non-IID problems in FL [8]. Recent approaches have been proposed to mitigate these challenges,
such as leveraging replay memory to store historical data experienced by the model in the past [9]
and utilizing generative adversarial networks (GANs) to generate historical data on each device to
help remember past experiences [10]. Some methods utilize the global model on the server to train a
generative model through knowledge distillation, but this approach leads to low-quality synthetic
data and introduces additional noise [11, 12]. While storing real historical data [13] is useful for
memory replay, it may not be feasible in cases where the data is available only for limited-time usage.
Alternatively, FOT [14] performs global subspace extraction to identify features of previous tasks,
aiming to prevent forgetting. However, FOT incurs higher communication costs between clients and
servers due to the transfer of subspace information and orthogonal projections. GANs, as traditional
generative models, on the other hand, involve learning two models (generator and discriminator) to
reach a stable equilibrium, which can be difficult to train and sometimes susceptible to mode collapse
[15] problems. Therefore, the powerful data generation capability demonstrated by the diffusion
model [16] in various domains [17, 18, 19] makes it a strong candidate to replay data within the CFL
context.

In this paper, we propose a novel framework DCFL that integrates CFL with conditional diffusion.
At each local device, the embedded diffusion model serves to alleviate the impact of catastrophic
forgetting by generating synthetic historical data. Since the diffusion model is not shared with
anyone, our framework adheres to general privacy restrictions. Subsequently, the target models (i.e.,
models performing FL) are aggregated on the global server to obtain a generalized global model.
We also provide a convergence analysis of DCFL by separately examining the convergence of the FL
backbone, the data distribution shift, and the data generation convergence with the diffusion model.
By combining these results, we demonstrate that the overall convergence of the system ultimately
hinges on the performance of the introduced diffusion model, of which the bounded characteristic
contributes to the system’s convergence. DCFL has been tested on three CFL scenarios and four
mainstream benchmark datasets, where DCFL significantly outperformed classical FL, classical CL,
traditional generative model, and state-of-the-art (SOTA) baselines.

The main contributions of this paper are provided as follows:

• We introduce a novel CFL framework, termed DCFL, which eliminates the need for replay
memory, enabling model learning for both local clients and the global server with dynamic
data inputs. DCFL leverages the modern diffusion model to generate synthetic historical data
based on previously observed data distributions (Section 3.1).

• We provide the convergence analysis for our DCFL framework. Our convergence result
captures the bound of the FL model, the bound affected by the diffusion model, and the
effect of data distribution shift between time steps (Section 3.2).

• We conduct extensive experiments using MNIST, FashionMNIST, CIFAR-10, and PACS
datasets under three practical CFL environments. The results demonstrate that our DCFL
framework improves upon the best baseline by 32.61% in the Class Incremental IID scenario,
15.16% in the Class Incremental Non-IID scenario, and 7.45% in the Domain Incremental
scenario (Section 4).

To the best of our knowledge, our DCFL is the first work that successfully integrates diffusion models
into continual federated learning, addressing its unique challenges with theoretical analysis.

2 Preliminary

2.1 Continual Federated Learning Scenarios

Unlike classical CL setups, CFL tends toward greater diversity due to the presence of multiple clients.
In the FL context, it requires (i) all clients to have the same model architecture, (ii) uniform consensus
among clients (i.e., all clients agree on the definitions of labels), and (iii) the same task (i.e., the same
global test set). Additionally, FL typically needs to address non-IID settings, where clients have
different class distributions. Therefore, CFL introduces entirely distinct scenario setups, and so far
there has been no unified approach in the literature.

2



Figure 1: Three Continual Federated Learning Scenarios. Class Incremental IID: Clients have an
identical class distribution, with classes incrementing over time. Class Incremental Non-IID: Clients
have a non-identical class distribution, with classes incrementing over time. Domain Incremental:
Clients data domain changes over time.

We introduce three different CFL scenarios: 1) Class Incremental IID, 2) Class Incremental Non-IID,
and 3) Domain Incremental settings, as shown in Figure 1. It is important to note that the IID setting
here differs from the traditional IID setting, such as those considered in [1]. In conventional FL, the
IID setting is modeled by distributing the whole training set uniformly at random across all clients,
without considering dataset evolution over time. In contrast, our IID setting in the CFL setting ensures
that all clients have identical class distribution at any given time but only with a subset of classes
(e.g., only labels 0 and 1). We model the dataset evolution by letting the clients have different set of
classes (e.g., labels 2 and 3) in the next time step.

2.2 Federated Averaging

We take the vanilla FedAvg [1] model as the general framework of our design, where the objective
function with model parameter θ is defined as:

min
θ

{
F (θ) ≜

K∑
k=1

pkFk(θ)

}
,

s.t.

K∑
k=1

pk = 1, pk ≥ 0,

(1)

where K is the number of clients and pk is the weight of the k-th client. The local model learning
loss function Fk(θ) is given by:

Fk(θ) ≜
1

ak

ak∑
j=1

f(θ;Xk,j) where ak = |Xk|, (2)

where f(·) is the loss function, and ak is the number of training data in k-th client. Considering local
clients in the t-th round, we have the aggregation of the global model as:

θt ←
K∑

k=1

pkθ
k
t where pk =

|Xk|
|X|

, (3)

where n represents the total number of samples across all clients. As in the FedAvg setup, the
aggregation of models is performed by weighting each client’s contribution according to the number
of samples they possess.

2.3 Denoising Diffusion Probabilistic Models

Basic DDPM [16] gradually adds random noise to the data over a series of time steps (x0, · · · , xN )
in the forward process, where x0 = x, xN = z. Specifically, the sample at each time step is sampled
from a Gaussian distribution conditioned on the sample from the previous time step with predefined
schedule β1:N ,

xn ∼ F (·|xn−1) = N (
√
1− βnxn−1, βnI). (4)

With equation (4), the sample at each step t can be expressed as a function of x0: xn =
√
αnx0 +√

1− αnϵ, where αn =
∏n

s=0(1 − βs), ϵ ∼ N (0, I) [20]. On the contrary, xN can be converted
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back to x0 step-wisely via the reverse denoising process:

xn−1 ∼ Gω(·|xn) = N (µω(xn, n),Σω(xn, n)), (5)

where µω and Σω can be obtained from neural networks. The objective of learning this denoising
function is to match the joint distributions of x0:N in the forward and reverse processes. To optimize
this objective, Ho et al. proposed a reformulation [16] by specifying the variance schedule β1:N and
fixing the reverse variance Σω(xn, n) to be βnI , which is:

min
ω
{L(ω) ≜ En∼U [1,N ],x0∼PX(·),ϵ∼N (0,I)[λ(n)

∥ϵ− ϵω(
√
αnx0 +

√
1− αnϵ, n)∥2]},

(6)

whereL(·) is the loss function of the diffusion model and λ(n) is a positive weighting function usually
set as 1 for all n to improve sample quality. Recently, the polynomial bounds on the convergence rate
of the diffusion model have also been given in [21].

3 Methodology

3.1 Proposed DCFL Framework

We propose using a conditional diffusion model for replay in CFL, termed DCFL, as depicted in
Figure 2. In the DCFL framework, each client possesses a target model θ (for various FL tasks) and a
diffusion model ω for replaying data distributions from previous time periods. The server receives and
aggregates only the target models from each client while remaining unaware of the clients’ diffusion
models.

Figure 2: Proposed DCFL Framework. Each client has a target model and a diffusion model, both
trained on the same dataset, consisting of the previous time period’s real and synthetic data. The
target model is uploaded to the server for aggregation, while the diffusion model remains local to
prevent privacy leakage. The trained diffusion model will generate synthetic data encompassing all
previously acquired knowledge.

We utilize Algorithm 1 to outline the general workflow of DCFL. The complete version is provided in
Appendix C. As we adopt FedAvg as the backbone for FL, both the local devices and the global server
perform updates and aggregation in a manner similar to FedAvg, including training the target local
model with gradient descent, as shown in the algorithm. Additionally, we incorporate the diffusion
model (in line 3 of Algorithm 1) for each local device to address the latent input data distribution
shift. This diffusion model is utilized to recover historical data experienced by generating synthetic
data, thereby mitigating the issue of catastrophic forgetting. Before training the local target model,
the diffusion model generates a portion of historical synthetic data mixed with current real data as
input for learning. The diffusion model is also trained on the mixed dataset of real and synthetic
data, which helps prevent catastrophic forgetting within the diffusion model itself. This process is
repeated for each local client, and the learned model gradients are aggregated at the end of every
communication round.
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Algorithm 1 Proposed DCFL Framework - See Algorithm 2 for Complete Procedure
Input: Communication rounds (T ), client datasets (Dk

t ), target model, loss function, and learning rate (θ, F ,
ηθ), diffusion model, loss function, and learning rate (ω, L, ηω)
Output: Generalized global model (θT )

Local update of the k-th client:
1: initialize ω0

2: for each round t = 1 : T do
3: Obtain Gkt−1 ← ωk

t−1(Gkt−1,n ∼ N (0, I)) via reverse process ▷ Generate synthetic data
4: Combine real and synthetic data with a scale factor δ: X k

t = Dk
t ∪ δ · Gkt−1

5: θkt ← θkt−1 − ηθ∇Fk(θ
k
t−1;X k

t ) ▷ Train target model
6: repeat ωk

t ← ωk
t−1 − ηω∇Lk(ω

k
t−1;X k

t ) until converge
▷ Train diffusion model

7: end for
8: return θkt to server

Global update of the server
1: initialize θ0
2: for each round t = 1 : T do
3: for each client k = 1 : K in parallel do
4: θkt ← k-th client’s local update
5: end for
6: θt ←

∑K
k=1 pkθ

k
t ▷ Aggregate target models

7: end for

3.2 Convergence Bound of CFL Framework with Diffusion

To determine the convergence bound of the designed CFL model, we need to 1) find the convergence
of the general FL framework with both original data and synthetic data, 2) verify the convergence
of data generation in the integrated diffusion model, and 3) prove the convergence of the whole
model regarding the latent input data distribution shift. To start with, we provide several standard
assumptions that have been widely used in the FL literature [22, 23].

Assumption 1. F1, · · · , FK are all L-smooth: for all model parameters θ1 and θ2, Fk(θ1) ≤
Fk(θ2) + (θ1 − θ2)

T∇Fk(θ2) +
L
2 ∥θ1 − θ2∥22.

Assumption 2. F1, · · · , FK are all µ-strongly convex: for all model parameters θ1 and θ2, Fk(θ1) ≥
Fk(θ2) + (θ1 − θ2)

T∇Fk(θ2) +
µ
2 ∥θ1 − θ2∥22.

Assumption 3. Let ξkt be sampled from the k-th device’s local data uniformly at random. The
variance of stochastic gradients in each device is bounded: E

∥∥∇Fk(θ
k
t , ξ

k
t )−∇Fk(θ

k
t )
∥∥2 ≤ σ2

k for
k = 1, · · · ,K.

Assumption 4. The expected squared norm of stochastic gradients is uniformly bounded, i.e.,
E
∥∥∇Fk(θ

k
t , ξ

k
t )
∥∥2 ≤ G2 for all k = 1, · · · ,K and t = 1, · · · , T − 1.

The basic FedAvg model has been proven to converge to a global optimum in non-iid settings [22].
When all the devices participate in the aggregation step and the FedAvg algorithm terminates after T
rounds, the following lemma will hold.

Lemma 1 (FedAvg convergence bound [22]). Let Assumptions 1 to 4 hold and L, µ, σk, G be defined
therein. Choose κ = L

µ , γ = max{8κ,E} and the learning rate ηt =
2

µ(γ+t) . Then FedAvg with full
device participation to the optimal F ∗ satisfies:

E [F (θT )]− F ∗ ≤ κ

γ + T − 1

(
2B

µ
+

µγ

2
E∥θ1 − θ∗∥2

)
, (7)

where B =
∑K

k=1 p
2
kσ

2
k + 6LΓ + 8(E − 1)2G2 and Γ = F ∗ −

∑K
k=1 pkF

∗
k measuring the degree

of non-iid.

Proof. See Section 3.2 in [22].
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Different from conventional FL, in the CL context, the data distribution will shift at every step,
introducing the catastrophic forgetting issue. In our framework, we avoid this problem by leveraging
the diffusion model to generate labeled synthetic data that can reflect the experienced historical real
data without storing them physically. Therefore, at step t+ 1, the input data Xt+1 is the combination
of real dataDt+1 and synthetic data Gt from the diffusion model recovering the data from the previous
step, satisfying:

Xt+1 ≡ Dt+1 ∪ δ · Gt, (8)

where δ is an extra scale factor controlling the amount of generated synthetic data compared to
real data to mitigate the negative impacts of inaccurate synthesis generations that cannot represent
previous real inputs. For simplicity of the derivation, we omit this factor (set δ = 1) in this proof,
while we use the sensitivity study regarding δ in Appendix H.2 for a thorough discussion. Besides,
according to equation (8), the sampled data distributions ξkt+1 regarding each part can be describe as
follows:

ξkt+1 ∼ Xt+1, ξ̃kt+1 ∼ Dt+1,
˜̃
ξkt+1 ∼ Gt, (9)

From t to t+ 1, the input data distribution is different as new data loaded at t+ 1 has not been seen
at t, and the synthetic data recovering the loaded data at t will deviate from the real data distribution.
We capture such data distribution shift in a controllable range, measured by ∆t, which aligns with
most learning scenarios. This character is depicted in the following assumption.

Assumption 5. In each continual learning step, the incoming data distribution shift is bounded
and deviation of can be captured in a measurable range with ∆t, which is: DKL(F

∗
t (θ

k
t ; ξ

k
t ) ∥

F ∗
t+1(θ

k
t+1; ξ̃

k
t+1)) ≤ ∆t.

Based on the given assumption, we measure the distance between F ∗
t and F ∗

t+1 with KL divergence:

Theorem 1 (Data distribution deviation measurement). The following equation can further bound
the KL divergence:

DKL

(
F ∗
t (θ

k
t ; ξ

k
t ) ∥ F ∗

t+1(θ
k
t+1; ξ

k
t+1)

)
≤ 1

2

[
DKL

(
F ∗
t (θ

k
t ; ξ

k
t ) ∥ F ∗

t+1(θ
k
t+1;

˜̃
ξkt+1)

)
+∆t

]
,

(10)

where ∆t is defined by the upper bound of incoming data distribution shift based on Assumption 5.

Proof. See Appendix A.

The KL divergence in the right-hand side of equation (10) indicates the distance between original
real data from step t and generated synthetic data in step t+ 1. We use the diffusion model as the
generative model in our framework, where we aim to reconstruct the real data distribution from
the previous step with newly generated synthetic data. Therefore, it is equivalent to measuring the
reconstruction convergence of the incorporated diffusion model. Recently, such a convergence bound
has been proposed in [21], summarized in the following lemma.

Lemma 2 (Convergence of data generation via the diffusion model) [21]). Suppose there exists
κ > 0 controlling the diffusion step size γ such that for each m = 0, . . . ,M − 1, we have γm ≤ κ ∈
{1, N −nm+1} where N is the total step in the diffusion model. Then, the bound of the approximated
reverse process for data generation is:

DKL

(
F ∗
t (θ

k
t ; ξ

k
t ) ∥ F ∗

t+1(θ
k
t+1;

˜̃
ξkt+1)

)
≲ ϵ2score + κ2dM + κdN + d exp(−2N),

(11)

where d is the dimension of the data and ϵscore denotes the maximum score approximation [24] error.

Proof. See Section 3 in [21].

Therefore, by integrating Lemma 1, 2 and Theorem 1, our CFL framework with the diffusion model
DCFL can be proven bounded during the learning.
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Theorem 2 (Convergence of DCFL). The convergence bound derived from Lemma 1, 2 and Theorem
1 is:

E [F (θT )]− F ∗
T ≤

κ

γ + T − 1

(
2B

µ
+

µγ

2
E∥θ1 − θ∗∥2

)
+ (1− 2−T )(ϵ2score + κ2dM + κdN

+ d exp(−2N)) + 2−T∆T .

(12)

Proof. See Appendix B.

The bound calculated in equation (12) offers a theoretical measurable convergence bound for our
proposed continual federated learning model, which utilizes the diffusion model as a synthetic data
generator. The convergence bound, as outlined in Theorem 2, comprises three components: the
convergence bound of the federated learning model, the bound of the diffusion model, and the
divergence of the data distribution. As the number of communication rounds approaches infinity
(T →∞), the first and third terms in equation (12) tend towards zero, rendering only the second term
relevant. This suggests that the convergence ultimately hinges on the performance of the introduced
diffusion model. However, according to Corollary 1 in [21], under specific conditions, the second
term relies solely on the error ϵ2score, signifying the final convergence of the entire system.

It is worth noting that the model experiences an inevitable distribution shift at each step. However, the
last term in equation (12) decreases monotonically, indicating that the deviation 2−t∆t regarding a
particular round t is mitigated with each training step, as the diffusion model will contribute synthetic
data for alleviating the data distribution shift.

4 Experiments

4.1 Experimental Setup

Datasets. We adopt commonly used datasets, including MNIST [25], Fashion-MNIST [26], and
CIFAR-10 [27], for the Class Incremental IID and Class Incremental Non-IID CFL scenarios
described in Figure 1. Our sampling method aligns with FedAvg’s but is adapted for the CFL
setting. Specifically, we uniformly split the datasets into 200 shards based on their classes, with each
client accessing only 2 shards during any given session (i.e., a period of time). The distribution of
data changes in subsequent sessions according to the different CFL scenario settings. We consider
T = 100 communication rounds for preliminary experiments, with the clients’ data distribution
changing every 20 rounds, resulting in 5 sessions (S = 100/20 = 5). Additionally, we use the
popular domain generalization dataset PACS [28] for the Domain Incremental CFL scenario. We
consider each client to have all classes within any given domain, and the clients’ data changes across
the 4 domains in the sequence Sketch→ Cartoon→ Art Painting→ Photo (increasing the level of
realism over time) [29]. Details of the datasets, scenario settings, and data preprocessing can be
found in Appendix D.

Implementation. To reduce computational overhead, the target model is trained 20 times during any
session, whereas the diffusion model is trained only once and generates synthetic data once. Apart
from T = 100 communication rounds, we set the target model to undergo Eθ = 5 local epochs, while
the diffusion model is trained for Eω = 100 or Eω = 1000 local epochs. Both models employ the
Adam optimizer with a learning rate of 1e-4. We employ the same CNN architecture used in FedAvg
for constructing the target model, consisting of two convolutional layers and two fully connected
layers. The backbone of the diffusion model is a conditional UNet, structured with one convolutional
layer and four-channel layers scaled to 64, 128, 128, and 256, respectively. Real labels (and the
domain for PACS) are utilized as conditions to guide data synthesis by the diffusion model. We set
the diffusion model to generate a number of synthetic samples equal to the number of real samples,
the ratio δ = 1. Details of implementation details can be found in Appendix E.

Baselines. We compare our DCFL with baselines with several frameworks: FL algorithms, FL with
classical CL methods, and state-of-the-art (SOTA) CFL frameworks. Specifically, for FL, we compare
with FedAvg [1] and FedProx [30]. For the integration of FL and CL, we implement FedAvg+LwF
[31] and FedAvg+EWC [32]. We adopt FedAvg+ACGAN [33] as the integration of the FL and
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generative model. For SOTA CFL frameworks, we consider FedCIL [34], FOT [14], MFCL [11],
and TARGET [12]. Details of the baseline algorithms and settings can be found in Appendix F.

4.2 Main Experimental Results

Figure 3 illustrates the performance comparison of DCFL against baselines across three CFL scenarios
on three datasets. The results indicate that catastrophic forgetting significantly impacts the clients’
ability to retain prior knowledge. In the Class-Incremental IID scenario, the class distributions among
all clients change every T = 20 rounds, with each client generally aware of a subset (i.e., 20%) of all
classes at any given time. The stepwise improvement in accuracy suggests effective retention and
mastery of both current and previous knowledge by the model. For the Class Incremental Non-IID
scenario, all clients are aware of all class information at any time, leading to convergent behavior
across all frameworks. However, the replay functionality in our framework, which ensures that each
client’s target model is trained with multiple class information, facilitates faster convergence.

MNIST Fashion-MNIST CIFAR-10
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Figure 3: Main Result - Comparison of Model Convergence with Baselines. Refer to Figure 5 for
the Domain Incremental scenario.

Table 1 shows that, compared to the baselines, our DCFL framework demonstrates significant ad-
vantages across all three datasets in both the Class Incremental IID and Class Incremental Non-IID
scenarios. Specifically, the proposed approach achieves improvements of 32.61 ± 15.91% in the
Class Incremental IID scenario (compared to the best baseline, FedAvg+ACGAN), 15.16± 6.97%
in the Class Incremental Non-IID scenario (compared to the best baseline, FedAvg+EWC), and
7.45% in the Domain Incremental scenario (compared to the best baseline, FedAvg+ACGAN). This
shows that our approach is better at overcoming catastrophic forgetting than the baselines. Unlike
FedAvg+ACGAN, which also relies on a generative model for replay, our use of a diffusion model
generates higher-quality synthetic images, thereby avoiding noise contamination in the training
dataset. Furthermore, the SOTA baselines suffer from their inherent limitations: FedCIL experiences
unstable convergence due to multiple loss functions, while FOT demonstrates slow convergence,
rendering it impractical. Meanwhile, both MFCL and TARGET produce low-quality synthetic images
as the generative model is trained solely on the basis of knowledge distillation.

4.3 Analysis of Scenarios

In the previous subsection, we compared the accuracy of DCFL with the baselines on the global test
set. In this subsection, we discuss the performance within the scenarios. Specifically, we demonstrate
the results using the standard CL evaluation method in Appendix G, considering only the classes or
domains encountered so far, following the settings in CL. The Class Incremental Non-IID scenario is
unsuitable for CL evaluation because it includes all classes at any given time.

Class Incremental IID is the most challenging CFL scenario because the server cannot aggregate
global knowledge, as all clients only have the same subset of classes at any given time. Due to this
characteristic, catastrophic forgetting is particularly severe. Figure 3 shows that most traditional
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Table 1: Main Result - Comparison of Final Accuracy with Baselines.
Scenario Class Incremental IID Class Incremental Non-IID Domain Incremental

Dataset MNIST FMNIST CIFAR-10 MNIST FMNIST CIFAR-10 PACS

FedAvg [1] 19.77 ↓74.92 19.96 ↓52.54 18.74 ↓19.39 82.99 ↓15.15 71.19 ↓16.60 42.89 ↓14.27 29.96 ↓18.06
FedProx [30] 19.78 ↓74.91 19.96 ↓52.54 18.60 ↓19.53 87.81 ↓10.33 70.93 ↓16.86 42.24 ↓14.92 33.82 ↓14.21
FedAvg+LwF [31] 19.77 ↓74.92 19.96 ↓52.54 18.67 ↓19.46 85.16 ↓12.98 68.24 ↓19.55 42.75 ↓14.41 34.57 ↓13.46
FedAvg+EWC [32] 19.78 ↓74.91 19.95 ↓52.55 18.64 ↓19.49 93.81 ↓4.33 74.37 ↓13.42 46.15 ↓11.01 38.02 ↓10.01
FedAvg+ACGAN [33] 42.15 ↓52.54 40.83 ↓31.67 24.52 ↓13.61 92.31 ↓5.83 70.70 ↓17.09 34.60 ↓22.56 40.57 ↓7.45
FedCIL [34] 46.36 ↓48.33 38.17 ↓34.33 21.59 ↓16.54 89.30 ↓8.84 62.25 ↓25.54 25.80 ↓31.36 27.79 ↓20.24
FOT [14] 32.18 ↓62.51 27.47 ↓45.03 13.47 ↓24.66 78.97 ↓19.17 63.82 ↓23.97 37.27 ↓19.89 39.42 ↓8.60
MFCL [11] 21.14 ↓73.55 19.81 ↓52.69 18.74 ↓19.39 76.02 ↓22.12 64.08 ↓23.71 37.98 ↓19.18 36.16 ↓11.86
TARGET [12] 20.55 ↓74.14 19.96 ↓52.54 18.62 ↓19.51 92.68 ↓5.46 68.96 ↓18.83 36.63 ↓20.53 30.72 ↓17.30

DCFL (Ours) 94.69 72.50 38.13 98.14 87.79 57.16 48.02

↓ indicates the accuracy decrease of the baselines compared to our DCFL framework. FMNIST refers to Fashion-MNIST.

baselines completely fail to retain previous knowledge because all knowledge appears only in a single
session. In this scenario, replay-based approaches are the best. This is because generative models can
replay very old knowledge, whereas other approaches struggle to retain even the knowledge from
the previous session. Among these, the diffusion model’s high-quality synthetic images avoid error
propagation, creating a more positive and effective feedback loop than other generative models like
ACGAN. CL analysis of the Class Incremental IID scenario can be found in Appendix G.1 and Tables
3 and 4.

Class Incremental Non-IID is the simplest (i.e., the least affected by catastrophic forgetting) CFL
scenario because the server can aggregate a generalized global model based on the clients with diverse
class distributions. So that the clients can continually learn global knowledge of other classes from
other clients. As shown in Figure 3, the Class Incremental Non-IID scenario mirrors the convergence
process of traditional FedAvg in a Non-IID setting. Even with changes in client data, FedAvg can
eventually converge based on its proven methodology. However, our DCFL framework accelerates
this process, providing more stability and faster convergence than the baselines. Benefiting from
the diffusion model, clients can learn features of multiple classes simultaneously, transforming
the Non-IID problem into an IID problem: as clients iterate through communication rounds, they
gradually acquire information about global classes through synthetic datasets.

Domain Incremental is a moderately challenging task. Similar to Class Incremental IID, it requires
retaining knowledge of all domains without forgetting, as clients will not revisit them. However, we
ensure that all clients have access to all classes within each domain, which makes it easier for clients
to learn global class knowledge. The diffusion model excels at generating images across different
domains and classes, outperforming all baselines. Notably, for Domain Incremental, we consider both
domain and class as conditions for synthetic data generation, which is crucial due to the significant
differences between domains in PACS that need special consideration. CL analysis of the Domain
Incremental scenario can be found in Appendix G.2 and Figure 5, and Table 5.

5 Related Work

Federated Learning (FL) has gained significant attention for its ability to train models across
distributed data sources without centralizing data. A plethora of FL frameworks are designed for
distributed learning, including asynchronous FL, decentralized FL, and hierarchical FL, among others,
as well as numerous studies aimed at addressing the challenges of non-IID data and heterogeneity
within FL [35, 36, 37, 38]. Some research has considered FL in dynamic contexts, such as varying
communication conditions, client mobility status, client availability, and resource constraints [39, 40,
41, 42]. However, current research on the issue of dynamically varying client datasets (i.e., CFL) is
not comprehensive, and existing solutions are limited to single CFL scenarios [43, 13, 44]. In this
work, we enumerate three CFL scenarios and experimentally demonstrate that DCFL is a universal
solution.

Continual Learning (CL) approaches mitigate catastrophic forgetting [45] issues while sequentially
learning new tasks. Among these, some methods introduce a replay memory where the experienced
data can be stored [46, 47]. Others include structure-based methods [48] and regularization-based
approaches [49, 32] to reduce the forgetting. Recently, leveraging generative replay [50, 51, 10]
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offers a promising avenue for preserving past knowledge while adapting to new tasks, thus addressing
the evolving nature of learning scenarios without storing the past data. However, some traditional
CL algorithms, such as Learning without Forgetting (LwF) [31], may not be applicable if there is
no overlap between the previous and current data distributions. LwF typically assumes that new
tasks share commonalities with previous tasks, enabling the model to maintain old knowledge while
learning new information. This assumption breaks down when previous tasks’ classes (e.g., {0, 1})
are completely different from those of the new tasks (e.g., {2, 3}). Therefore, our proposed diffusion
model as replay has been demonstrated to be a universal solution for all different CFL scenarios.

Diffusion Models have showcased superior performance in generating detailed and diverse instances
[52] and succeeded in many areas, including computer vision [53, 54] and reinforcement learning
[55, 56]. There exist three main formulations of diffusion models: Score-based Generative Models
(SGM) [57, 58], Denoised Diffusion Probabilistic Models (DDPM) [20, 16, 59], and Stochastic
Differential Equations (Score SDE) [60, 61]. On this basis, [62] shows the superiority of the diffusion
model compared to other generative models via training a classifier on noisy images and using
gradients to guide the diffusion sampling process to the conditioning information, such as labels, by
altering the noise prediction. Besides, [63] also shows the possibility of running conditional diffusion
without an independent classifier. In this work, we exploit a conditional diffusion model in our CFL
framework for historical data recovery.

6 Conclusion

In this paper, we introduce DCFL, a novel Continual Federated Learning (CFL) framework that
incorporates diffusion models for synthetic historical data generation. The synthetic data generated
by DCFL helps in retaining memory of previously encountered input data distributions and mitigates
the impact of data distribution shifts during learning, thus avoiding latent catastrophic forgetting
issues. Theoretical analyses are provided to support the convergence of our proposed framework. Fur-
thermore, experimental results on multiple datasets showcase the effectiveness of DCFL in addressing
FL tasks and mitigating the negative impact of input distribution shifts. Currently, as one limitation,
we have not explored utilizing multimodality data, such as text prompts, for enhanced data synthesis
in CFL tasks, which can be considered as future work.
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A Proof of Theorem 1

Proof. Given the KL divergence, we have:
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where (a) adopts Assumption 5.

This concludes the proof.

B Proof of Theorem 2

Proof. Considering the generated data at step t will be the input data of step t + 1, we have the
iterative measurement of the bound regarding this data distribution shift. According to Theorem 1
and equation (9), we have:
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where we further simplify the results at the last inequality (a) using the summation of the geometric
series and Lemma 2.

We use the FedAvg model as the backbone for federated learning and the diffusion model to generate
synthetic data for continual learning. The convergence of the system takes into account the inevitable
shift in distribution, which can be measured using KL divergence. This distribution shift occurs
at each iteration from t = 1 to T , nested as shown in equation (14). Initially, the convergence is
determined by:

E [F (θT )]− F ∗
T ≤E [F (θT )] +DKL(F

∗
1 ∥ F ∗

2 )− F ∗
T . (15)

Equation (14) has provided us with an upper bound about the introduced data distribution shift
ranging from t = 1, . . . , T . Considering this in the designed CFL system, the final convergence
bound can be derived as:

E [F (θT )]− F ∗
T ≤ A+DKL(F

∗
1 ∥ F ∗

2 )

≤ A+

(
1− 1

2T

)(
ϵ2score + κ2dM + κdT̄ + d exp(−2T̄ )

)
+

1

2T
∆T .

(16)

where A ≜ κ
γ+T−1

(
2B
µ + µγ

2 E∥θ1 − θ∗∥2
)

based on Lemma 1. This concludes the proof.
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C Complete algorithm

We present our complete algorithm combining FL with the diffusion model below as the complete
extension of the Algorithm 1. As noted in Algorithm 2, we illustrate the alignment of the diffusion
model with local clients. In practice, depending on the task’s complexity, we may transition from
an unguided diffusion model, such as a common DDPM diffusion model, to a conditioned diffusion
model. While the former is sufficient for most simple generation workloads, the latter performs
better for tasks requiring complicated synthetic unstructured data generation, such as images with
delicate contents. To utilize the conditioned diffusion model, both the data and its label are passed
as inputs for model training. This often necessitates thorough model training to achieve precise
data generation, demanding significant computational resources. To address this challenge, we can
leverage a pre-trained model trained on a large general dataset and fine-tune our diffusion model
accordingly based on our purposes.

Algorithm 2 Proposed DCFL Framework Complete Procedure
Input: Communication rounds (T ), client datasets (Dk

t ), target model, loss function, and learning
rate (θ, F , ηθ), diffusion model, diffusion step, loss function, and learning rate (ω, N , L, ηω)
Output: Generalized global model (θT )

Local update of the k-th client:
1: initialize ω0

2: for each round t = 1 : T do
3: if t = 0 then
4: Data includes current real data only: X k

0 = Dk
0

5: else if t > 1 then
6: ▷ Generate synthetic data
7: Gkt−1,n ∼ N (0, I)
8: for n = N : 1 do
9: z ∼ N (0, I) if t > 1 else z = 0

10: Gkt−1,n−1 = 1√
αn

(
Gkt−1,n − 1−αn√

1−ᾱn
ϵω(Gkt−1,n,y, n)

)
+
√
βnz, given labels y

11: end for
12: Obtain synthetic data Gkt−1 ≡ Gkt−1,0

13: Combine real and synthetic data with a scale factor δ: X k
t = Dk

t ∪ δ · {Gkt−1,y}
14: end if

– · – · – · – · – ↑ Generating synthetic data ↑ – · – · – · – · – ↓ Training models ↓ – · – · – · – · –
15: repeat Eθ epochs
16: θkt ← θkt−1 − ηθ∇Fk(θ

k
t−1;X k

t ) ▷ Train target model
17: until θ converged
18: repeat Eω epochs
19: ωk

t ← ωk
t−1 − ηω∇Lk(ω

k
t−1;X k

t , n) ▷ Train diffusion model
20: until ω converged
21: end for
22: return θkt to server

Global update of the server
1: initialize θ0
2: for each round t = 1 : T do
3: for each client k = 1 : K in parallel do
4: θkt ← k-th client’s local update
5: end for
6: θt ←

∑K
k=1 pkθ

k
t ▷ Aggregate target models

7: end for
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D Datasets

We use the following four datasets for our experiments, each applied to different CFL scenarios, as
shown in Table 2.

Table 2: Properties of Datasets and Three CFL Scenarios.
Scenario Class Incremental IID Class Incremental Non-IID Domain Incremental

Dataset
MNIST MNIST PACS

Fashion-MNIST Fashion-MNIST
CIFAR-10 CIFAR-10

Attribute Client 0:{0, 1} → {2, 3} Client 0:{0, 1} → {2, 3} Client 0: Domain 0→ 1
Client 1:{0, 1} → {2, 3} Client 1:{2, 3} → {4, 5} Client 1: Domain 0→ 1

Total Rounds T 100 100 80

Session/Domain 5 5 4

Number of Classes All Clients: 2 All Clients: 10 All Clients: 7
at Any Time Each Client: 2 Each Client: 2 Each Client: 7

• Class-Incremental IID and Class-Incremental Non-IID.
– MNIST [25] is a large dataset for handwritten digit recognition, containing 70,000 grayscale

images of size 28 × 28 pixels, representing digits from 0 to 9. To accommodate the input
dimensions of the UNet in our diffusion model, we resize the images to 32× 32 pixels. We
split the MNIST dataset into 20 clients, with each client having 5 sessions and each session
containing 2 classes. Therefore, each session in every client has 300 samples for any given
class.

– Fashion-MNIST [26] is a large dataset for clothing recognition, similar in size and format to
MNIST, with 70,000 grayscale images of size 28× 28 pixels. It includes categories such as
T-shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle boot. Compared
to MNIST, the images in Fashion-MNIST have more complex shapes and textures, increasing
the difficulty of recognition. We adopt the same loading, partitioning, and preprocessing
procedures as with MNIST.

– CIFAR-10 [27] is a large dataset for object recognition, consisting of 60,000 color images of
size 32× 32 pixels, each with three RGB color channels. The dataset includes objects such
as Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, and Truck. Compared to
MNIST and Fashion-MNIST, CIFAR-10 poses a greater challenge due to the complexity and
diversity of backgrounds and objects. We split the CIFAR-10 dataset into 10 clients, with
each client having 5 sessions and each session containing 2 classes. Therefore, each session in
every client has 500 samples for any given class.

• Domain-Incremental.
– PACS [28] is a widely used dataset for domain adaptation and generalization studies, featuring

4 significantly different visual domains: Photo, Art Painting, Cartoon, and Sketch. It contains
a total of 9,991 color images of size 227x227 pixels, with each domain comprising: Photo
(1,670 images), Art Painting (2,048 images), Cartoon (2,344 images), and Sketch (3,929
images). Each domain includes seven categories: Dog, Elephant, Giraffe, Guitar, Horse,
House, Person. We use the PACS dataset for domain-incremental learning, ensuring that each
client retains the same categories across different domains (the same as the IID setting in
FedAvg). The entire PACS dataset is split into 80% training and 20% testing sets, with the
training set further divided among clients according to the domain-incremental setting. We
split the PACS dataset into 10 clients, with each client having 4 domains, each containing
all classes. Consequently, the number of samples per domain in each client is approximately
312, 184, 161, and 131, respectively. Note that the sample sizes for each domain in PACS
are different; and these are approximate values because we randomly split the training and
testing sets in an 8:2 ratio, and different seeds result in varying sample sizes (we ensure that
the number of samples per class is consistent within each client). These sample sizes include
all classes, but the class distribution differs across domains, as shown in Figure 4.
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Figure 4: Data Distribution of PACS Dataset. The figure shows the number of samples owned by
each one single client.

E Implementation Details

Training Details. For all experiments, both the target model and the diffusion model use the Adam
optimizer with a learning rate of 1e-4 and a batch size of 32. For the target model, the training epochs
are set to Eθ = 5. For the diffusion model, the training epochs are set according to the complexity
of the images: Eω = 100 for MNIST and Fashion-MNIST, and Eω = 1000 for CIFAR-10 and
PACS. All models are implemented in PyTorch and trained on an NVIDIA A100 GPU with 40 GB of
memory. Using MNIST in the Class Incremental IID scenario as an example, the execution time for a
single client is approximately 0.5 seconds for training the target model, 180 seconds for training the
diffusion model, and 200 seconds for generating synthetic samples.

Target Model - CNN Architecture. We use a CNN as the target model for MNIST, Fashion-MNIST,
CIFAR-10, and PACS. The architecture consists of two convolutional layers, the first with 32 filters
and the second with 64 filters, both using a kernel size of 5 and padding of 2. Each convolutional
layer is followed by a ReLU activation and a max pooling layer with a pool size of 2. The output
from the convolutional layers is then flattened and passed through a fully connected layer with 512
units, followed by another ReLU activation. The final layer is a fully connected layer with 10 units
(or 7 units for PACS), corresponding to the number of classes, and a log-softmax activation function.

Diffusion Model - Conditional UNet Architecture. We use a conditional UNet as the backbone for
the diffusion model in our framework. The architecture starts with an initial convolutional layer that
projects the input image into a higher-dimensional space with 64 channels. It then processes the data
through a series of downsampling and upsampling blocks. The downsampling path consists of four
blocks with channel sizes of 64, 128, 128, and 256, respectively. Each block contains residual blocks
and, in the deepest layer, attention mechanisms to enhance feature representation. Each residual block
includes group normalization and dropout, ensuring stable training and preventing overfitting. In the
middle of the network, a middle block contains both residual and attention mechanisms, maintaining
the channel size at 256. The upsampling path mirrors the downsampling path but in reverse order,
reducing the channel dimensions while merging features from corresponding downsampling layers
through skip connections. This upsampling process includes upsampling layers to expand the spatial
dimensions back to the original size. Finally, the model normalizes and activates the features before
passing them through a final convolutional layer, which reduces the output to the desired number of
image channels. We incorporate time and condition information (class for MNIST, Fashion-MNIST,
and CIFAR-10; class and domain for PACS) into the model, where the condition dimension is set to
32 for MNIST, Fashion-MNIST, and CIFAR-10, and 64 for PACS. The original implementations of
DDPM and UNet are sourced from labml_nn library [64].
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F Baselines

We consider four types of baseline for comparison.

• FL Algorithms.
– FedAvg [1] is the most representative and classic FL algorithm, where the server aggregates

the received client models weighted by the number of client samples to obtain the global
model.

– FedProx [30] is popular FL algorithm. Built on FedAvg, it introduces a proximal term in
the loss function during local training to reduce the divergence between the local and global
models, addressing client heterogeneity. We did not adapt this proximal term loss to the CFL
scenario, but only compute the difference between the global model at round t− 1 and the
local model at round t. The proximal term loss function is µ

2 ∥θ
k
t − θt−1∥2. We set the weight

parameter µ = 1 for the proximal term as in the original paper.

• FL with Classical CL Methods.
– FedAvg+ LwF (Learning without Forgetting) [31] is a classic CL algorithm that utilizes

knowledge distillation, requiring the new model to mimic the output of the old model on
the same input when training on new tasks. We adapt LwF to the CFL scenario, where, in
session s, the student model is guided by the teacher model from the last communication
round of session s− 1. In which the last communication round of the previous session can be
calculated as t∗ =

⌊
t

T/S

⌋
× T

S , where T is the total number of rounds, and S is the number
of sessions. The teacher model θt∗ guides all training in the next session. The LwF loss
function is expressed as LLwF = Ltask + λLwFDKL (θt∗(x)∥θt(x)), where DKL denotes
the Kullback-Leibler (KL) divergence, and λLwF is a weighting factor used to balance the
influence of previous and current tasks. We set λLwF = 1, consistent with the setting in [31].

– FedAvg+ EWC (Elastic Weight Consolidation) [32] is another classic CL algorithm that
applies additional constraints to protect model parameters relevant to old tasks from significant
updates. We adapt EWC to the CFL scenario similarly to LwF, using the model from the last
communication round of the previous session θt∗ as the old task model to guide all training
in the next session. The EWC loss function is LEWC = Ltask +

λEWC

2

∑
i F

t∗

i (θti − θt
∗

i )2,
where λEWC is the EWC penalty, and Fi are the values of the Fisher information matrix for
the parameter θt

∗

i . We set λEWC = 400, consistent with the setting in [32].

• FL with Generative Model as Replay.
– FedAvg+ ACGAN (Auxiliary Classifier Generative Adversarial Networks) [33] is a widely

used conditional generative model. A traditional GAN consists of a generator that creates syn-
thetic images and a discriminator that distinguishes between real and fake samples. ACGAN
also extends this by requiring the discriminator to classify the samples, enabling conditional
output. For the implementation of FedAvg+ACGAN, we replace the diffusion model in our
DCFL framework with ACGAN while keeping the rest of the experimental settings identical,
such as training epochs, learning rate, and the number of generated images.

• SOTA CFL Frameworks.
– FedCIL [34] uses ACGAN for generating synthetic data while employing model consolidation

to aggregate ACGANs from different clients and consistency enforcement to ensure that local
training aligns better with the global model, thereby reducing training bias. However, FedCIL
has some significant limitations, including (i) the server requires resources to train a server
ACGAN, (ii) clients need to upload their ACGANs, causing privacy leakage, and (iii) it is
not applicable to different tasks, such as object detection and semantic segmentation, since
FedCIL only considers the discriminator in FL. In contrast, decoupling the generative model
from the target model, as done in our DCFL framework and the baseline FedAvg+ACGAN,
offers better scalability.

– FOT [14] performs global principal subspace extraction to identify features critical to previous
tasks, which are then protected during subsequent training to prevent forgetting. Subsequently,
through the orthogonal projection aggregation method, when training new tasks, the server
orthogonally projects model updates from the clients onto the orthogonal complement of the
old tasks’ subspace. This ensures that updates occur only in directions unrelated to the old
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tasks, thereby minimizing the impact of learning new tasks on the performance of previous
tasks. Although this approach does not require additional computation on the clients, it does
necessitate additional computation on the server, such as orthogonal projection and subspace
extraction. Moreover, FOT entails higher communication costs between clients and servers to
transfer subspace information and orthogonal projections, raising concerns about potential
privacy breaches.

– MFCL [11] trains a generative model on the server through knowledge distillation using the
aggregated global model and then downloads this generative model to all clients to generate
synthetic data and perform local training. MFCL optimizes four loss functions for training the
generative model: cross entropy, diversity, batch statistics, and image prior. Although this is a
data-free generative model training strategy, the quality of the generated models is suboptimal.
While clients incur no additional computational overhead, the server requires substantial
computational resources to train the generative model and incurs significant communication
overhead to transmit the model.

– TARGET [12] trains a generative model on the server by knowledge distillation using the
aggregated global model and then downloads the synthetic dataset to all clients for local
training. TARGET optimizes the generative model using cross-entropy, KL loss with the
student model, and batch normalization. The success of local training is heavily dependent on
the quality of the synthetic dataset, which is difficult to guarantee. Additionally, the server
incurs substantial computational overhead for training the generative model and significant
communication overhead for transmitting the synthetic dataset.

G Continual Learning Analysis of Scenario

G.1 Class Incremental IID

We demonstrate the accuracy of the model on the classes encountered so far during the FL process
as the classes increment. Specifically, in our setup, the accuracy for session 1 refers to the accuracy
of the global target model in the communication round T = 20 on a test set that contains only
classes {0, 1}. The accuracy for session 2 refers to the accuracy of the global target model in the
communication round T = 40 on a test set that contains only classes {0, 1, 2, 3}, and so on. Session
5 represents the accuracy of the final global target model on the complete test set, which is the final
accuracy shown in Table 1. This method is a popular way to illustrate Class Incremental CL scenarios,
providing a fine-grained view of the model’s learning performance at any given time. It is evident
that the model cannot accurately classify classes it has never encountered, so showing the accuracy
on unseen classes is not meaningful.

As shown in Tables 3 and 4, the accuracy varies across three datasets in the Class Incremental
scenarios. For session 1, most of the frameworks are essentially vanilla FedAvg, and accuracy
differences arise solely from the uncertainties in the training process. In session 2, the CL strategies
of all frameworks start to take effect to avoid catastrophic forgetting. FedAvg, FedProx, FedAvg+LwF,
and FedAvg+EWC fail to remember the previous data distribution, as they can only correctly classify
the current classes {2, 3}, resulting in a subsequent accuracy drop of about 50%. By session 3,
these frameworks can remember only the current 2 classes out of a total of 6 classes, leading to
an accuracy of approximately 2

6 . In contrast, frameworks specifically designed for CFL problems
perform significantly better, demonstrating their ability to overcome catastrophic forgetting to varying
degrees. Comparatively, the accuracy declines faster for CIFAR-10, indicating that its images are
rich in information and complex patterns, making them more prone to forgetting. Therefore, for
the CIFAR-10 dataset, more samples per client and additional training epochs are necessary for the
model to learn the representations of different classes better.

Note that we focus on the Class Incremental IID scenario because it only has a subset of classes
at any given time or session, whereas Class Incremental Non-IID includes all classes. Therefore,
the Class Incremental Non-IID scenario does not require fine-grained analysis of the accuracy on
currently encountered classes and can be directly tested on the complete test set.
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Table 3: Analysis of Scenario - Class Incremental IID. Tested on encountered classes.

Method MNIST - Session Fashion-MNIST - Session

1 2 3 4 5 1 2 3 4 5

FedAvg [1] 100.00 49.07 31.07 24.90 19.77 99.40 49.00 33.33 25.00 19.96
FedProx [30] 100.00 49.03 31.07 24.77 19.78 99.45 49.10 33.33 25.00 19.96
FedAvg+LwF [31] 99.95 49.07 31.07 24.88 19.77 99.40 49.05 33.33 25.00 19.96
FedAvg+EWC [32] 99.95 49.07 31.32 26.46 19.78 99.55 49.27 33.35 25.00 19.95
FedAvg+ACGAN [33] 100.00 87.76 61.37 52.90 42.15 99.25 82.28 60.87 37.11 40.83
FedCIL [34] 99.84 81.78 73.38 66.99 46.36 98.57 66.51 54.59 35.95 38.17
FOT [14] 100.00 47.53 38.27 32.76 32.18 99.45 48.58 48.35 34.61 27.47
MFCL [11] 100.00 49.07 33.43 26.86 20.55 99.45 48.95 33.33 25.00 19.96
TARGET [12] 100.00 50.88 35.07 26.38 21.15 99.40 49.65 33.10 24.77 19.81

DCFL (Ours) 99.95 99.62 98.86 97.52 94.69 99.55 90.40 80.98 68.28 72.50

Table 4: Analysis of Scenario - Class Incremental IID. Tested on encountered classes.

Method CIFAR-10 - Session

1 2 3 4 5

FedAvg [1] 94.55 41.70 29.32 24.01 18.74
FedProx [30] 95.45 41.40 29.37 24.02 18.60
FedAvg+LwF [31] 94.45 41.75 29.70 24.07 18.67
FedAvg+EWC [32] 94.40 41.17 29.48 24.16 18.64
FedAvg+ACGAN [33] 93.90 71.17 43.58 30.34 24.52
FedCIL [34] 80.66 48.58 35.88 29.36 21.59
FOT [14] 94.60 34.42 23.07 18.06 13.47
MFCL [11] 94.80 41.05 28.97 23.95 18.62
TARGET [12] 94.80 47.10 31.32 23.43 18.74

DCFL (Ours) 94.55 76.70 54.68 40.75 38.13

G.2 Domain Incremental

We show the accuracy of the model on the domains encountered so far during the FL process as the
domains increment. Unlike in the Class Incremental IID scenario, where the model needs a thorough
understanding of different classes for accurate classification, in the Domain Incremental scenario, the
model can potentially classify categories even from unseen domains. For example, a model trained
on the Cartoon domain might correctly classify images from the Photo domain. Figure 5 shows the
changes in the model accuracy in the complete test dataset, where it can be observed that the model
accuracy initially increases and then decreases. This is partly due to the nature of the dataset, where
some domains (e.g., Art Painting) are not closely related to others. Additionally, the order of domains
can lead to inconsistent accuracy variations. In this paper, we follow the setting from other literature,
specifically Sketch→ Cartoon→ Art Painting→ Photo (increasing the level of realism over time)
[29]. If we consider decreasing the level of realism over time, the accuracy variations would present
a different case.

For the above reasons, we should also consider presenting and analyzing the model’s performance
in the Domain Incremental scenario by testing only on the currently encountered domain, as shown
in Table 5. It is evident that for our DCFL framework, there is a significant drop in accuracy from
session 2 to session 3. This indicates a substantial difference between the synthetic data generated for
session 1 (Sketch) and session 2 (Cartoon) compared to session 3 (Art Painting), leading to confusion
in the target model on these data. In contrast, the accuracy drop for baselines occurs sharply from
session 1 to session 2, and then slows down in subsequent domain changes. This further confirms the
significant differences between domains. However, our DCFL framework can mitigate the impact of
these domain differences on the performance of the target model.
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Figure 5: Main Result - Domain Incremen-
tal Scenario. Tested on the complete test set.

Table 5: Analysis of Scenario - Domain Incremental.
Tested on encountered classes.

Method PACS - Domain

1 2 3 4

FedAvg [1] 63.36 45.82 33.21 29.96
FedProx [30] 66.79 44.38 35.50 33.82
FedAvg+LwF [31] 64.76 46.61 36.58 34.57
FedAvg+EWC [32] 66.16 44.70 42.52 38.02
FedAvg+ACGAN [33] 64.89 51.08 42.82 40.57
FedCIL [34] 50.51 25.95 15.90 13.49
FOT [14] 65.52 43.82 40.12 39.42
MFCL [11] 66.79 53.34 41.25 36.16
TARGET [12] 65.02 44.83 35.91 30.72

DCFL (Ours) 69.59 64.70 52.55 48.02

H Sensitivity Study

H.1 Effect of Number of Clients (Sample Size per Client)

For simulation datasets such as MNIST, Fashion-MNIST, and CIFAR-10, where increasing the
number of clients results in a reduction in the data available to each client. In our setup, with a total
of 5 sessions, when the number of clients is set to 20, the sample size per client aligns with that set
in FedAvg. However, variations in client numbers change the sample size per client, affecting not
only the training of the target model but also the training of the diffusion model. Consequently, we
analyze the effect of different numbers of clients on accuracy, as illustrated in Figure 6. For synthetic
datasets consistent with the main text, we ensure that the sample sizes of the synthetic datasets match
those of the real datasets.

The results demonstrate that the DCFL framework performs better when there are fewer clients and
each client has a larger sample size, which means the data are more concentrated. This improvement
is rationalized by the fact that the diffusion model has access to more training data, resulting in more
realistic and less noisy synthetic data. Moreover, since our setup ensures that the synthetic datasets
have the same number of samples as the real datasets, fewer clients allow the diffusion model to
generate more synthetic data, which in turn aids the training of the target model.

(a) Accuracy on the Global Test Set (b) Accuracy Across Session Test Sets

Figure 6: Sensitivity Study - Number of Clients. Using the MNIST dataset in the Class-Incremental
IID scenario as an example: 5 clients - 2400 samples per session per client, 10 clients - 1200 samples
per session per client, 20 clients - 600 samples per session per client, 30 clients - 400 samples
per session per client, 50 clients - 240 samples per session per client. The setup with 20 clients
corresponds to the configuration in the main text.
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H.2 Effect of Number of Synthetic Samples

The number of synthetic samples generated needs to be balanced in real-world scenarios to maximize
performance while minimizing computational overhead and memory usage. In the main text, we
always set the number of synthetic samples equal to the number of real samples (i.e., δ = 1) to ensure
a balance between previous and current knowledge during target model training. This varies across
different datasets; for example, in the MNIST dataset, the number of synthetic samples is 600, while
in the CIFAR-10 dataset, it is 500. Although the diffusion model can generate an unlimited number of
synthetic samples, it is evident that when there are too many synthetic samples, the target model may
struggle to learn effective current knowledge. We analyze the effect of different number of synthetic
samples on accuracy, as illustrated in Figure 7.

The results show that performance is optimal when the number of synthetic samples equals the number
of real samples, i.e., with the ratio δ = 1. Fewer synthetic samples cannot provide sufficient training
quality for the target model, while an excess of synthetic samples causes the model to overly focus on
previous knowledge at the expense of current knowledge. Additionally, the diffusion model’s training
dataset comprises the real data from the current session and the synthetic data from previous sessions.
Therefore, if there are too many synthetic samples from previous sessions, they will continue to
influence the diffusion model’s training in the current session, preventing the diffusion model from
adequately learning the real data of the current session.

(a) Accuracy on the Global Test Set (b) Accuracy Across Session Test Sets

Figure 7: Sensitivity Study - Number of Synthetic Samples. Using the MNIST dataset in the
Class-Incremental IID scenario as an example. We maintain a setup of 20 clients and 600 real samples
per session per client while varying the number of synthetic samples generated. The setup with δ = 1
corresponds to the configuration in the main text.
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I Broader Impacts

DCFL is a CFL framework designed to address the issue of catastrophic forgetting in dynamic FL
scenarios. It has a wide range of societal impacts, promoting applications and deployments across
multiple fields, but it also carries potential risks. Besides the typical privacy and security concerns
faced in FL, including a generative model also inherits potential issues associated with generative
models. Below, we outline the positive impacts of DCFL, its potential risks, and mitigation strategies.

Potential Positive Societal Impacts.

• Clients Operate in Dynamic Environment. DCFL effectively supports multiple clients in ever-
changing environments. The targets may change continuously, such as personnel, vehicles, build-
ings, etc., or the environment itself may vary, such as day and night, seasonal changes, different
weather conditions, etc. For example, in an intelligent transportation scenario, a static roadside unit
captures photos of vehicles in various weather conditions and needs to remember the features of
previous weather conditions while continuing to learn in the current weather.

• Clients Move Through Different Environments. DCFL effectively supports multiple dynamic
clients performing tasks in different environments because it prevents clients from forgetting
knowledge from previous environments. This is crucial as the targets in these different environments
are likely to be similar. For example, an unmanned aerial vehicle (UAV) patrolling different
environments, from towns to highways to forests, may encounter similar manifestations of potential
hazards like fires.

Potential Negative Societal Impacts.

• Malicious Attacks. Although clients in DCFL do not send the diffusion model to anyone, including
the server or other clients, which minimizes the risk of privacy leakage, there is still a potential
risk of replaying sensitive private data. If an attacker gains access to the diffusion model on a
client, they could potentially replay all historical data. In contrast, if a client in vanilla FedAvg is
compromised, only the current data are at risk. Given the broader temporal span and richness of
the data that could be exposed, the former scenario is clearly more severe. Therefore, researchers
should consider implementing privacy protection techniques for generative models when deploying
DCFL to prevent attackers from extracting sensitive data from synthetic samples.

• Misuse. The diffusion model in DCFL also carries the risk of misuse. For example, some users
might use sensitive data to train the diffusion model to circumvent regulatory scrutiny of stored
data. Therefore, regulatory bodies need to implement stringent oversight and verification processes
to ensure that generative models are not being used to bypass data compliance regulations.
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