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3-D Indoor Positioning Based on Passive Radio
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Abstract—In recent years, indoor positioning systems (IPSs)
have received attention from many research fields, such as
robotics, navigation, human—computer interaction, etc. However,
IPS based on passive radio frequency (PRF) technology is still
rare. This article proposes a 3-D IPS based on received sig-
nal strength (RSS) distribution and Gaussian process regression
(GPR). Traditional RSS-based positioning systems have a trans-
mitter with known frequencies, while in the proposed PRf
signal of Opportunity—3D IPS (PRO-3DIPS), the system nei-
ther deploys new transmitters nor uses any a priori knowledge
of transmitters. Furthermore, PRO-3DIPS integrates multiple
Signal of Opportunity (SoOP) sources, shadowing, fading, and
also captures scenario signatures. Data collection and analysis of
PRF-based RSS distribution in 3-D space enables the capability
of 3-D positioning. Three methods are applied and compared to
find the frequency band most impacted by the scenario to achieve
the best positioning performance as well as used in the estimation
of RSS distribution. The RSS distribution is estimated by mea-
suring the PRF spectrum on a fixed grid in the scenario. Using
the RSS distribution, the GPR can accurately locate the receiver
position. RSS at 90-gridded positions were collected in the exper-
iment scenario, with one hundred samples at each position. The
experimental result shows that a root-mean-square error (RMSE)
of the proposed PRO-3DIPS is 0.292 m when the sampling dis-
tance is 1 m. The result demonstrates that the PRF spectrum
is a new modality for the positioning task, which demonstrates
better performance than most existing RF-based technologies.

Index Terms—Gaussian process regression (GPR), indoor posi-
tioning system (IPS), passive radio frequency (PRF), received
signal strength (RSS) distribution, Signal of Opportunity
(SoOP).

I. INTRODUCTION

WITH the development of smart life and industrial
automation, an accurate, low latency, and low-cost
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indoor positioning system (IPS) has always been desirable
to enable position-based services. Due to the relatively com-
plex indoor scenarios, including multiple interference sources,
building structures, and weak GPS signals, some indoor
positioning solutions have been proposed, such as WiFi
[1], [2], visible light [3], [4], ultra wide band (UWB) [5],
[6], radio frequency identification (RFID) [7], [8], broadcast-
ing [9], magnetic field [10], etc. IPS based on active radio
frequency (RF) signals, such as WiFi, UWB, and RFID are
the most popular research directions of IPS, benefiting from
its advantages of low-power consumption, high precision, and
low cost. However, the positioning system using passive RF
(PRF) technology based on multiple Signals of Opportunity
(So0Ps) is still a blank field.

A. Motivation and Proposed Solution

RF-based IPSs usually consist of a transmitter, target, and
receiver. These RF signal information can also be divided
into received signal strength (RSS) indicator and channel state
information (CSI) according to whether they contain phase
information represented by the angle. The RSS-based position-
ing system has attracted our attention because of its lower cost,
strict requirements, and robustness of the instrument. However,
RSS-based positioning systems also face many problems,
including shadowing, multipath, diffraction, etc. [11], [12]. A
common solution for IPS based on RF signal RSS is trian-
gulation, which needs additional transmitters to determine the
target position and real-time synchronization. However, the
triangulation solution still has limitations in the number of
devices and performance.

Fading of the wireless channel has a significant impact
on the proposed system performance, including large-scale
fading and small-scale fading, where these two fadings are
spatially, temporally, and frequency related [13]. The fad-
ings from multiple RF signal sources are used to feature
the PRF spectrum, including large-scale fading due to long
distances and large objects, such as buildings and spatially
small-scale fading due to the constructive and destructive
effects at the wavelength-level. Temporally small-scale fading
exhibits a Rayleigh distribution, which can be approximated
by a Gaussian distribution when the sample size is large [14],
so Gaussian processes are used to model small-scale fading.
Frequency selective small-scale fading is also a crucial fac-
tor, so it is necessary to consider fading to find the most
impacted frequency band to achieve the positioning task. Due
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Fig. 1. Block diagram of the proposed PRF sensor-based positioning system
PRO-3DIPS.

to the assumed long distance between the SOOP source and the
experiment location and the slow movement of the receiver in
the indoor scenario, the near-far effect, and the Doppler effect
can be ignored.

This article proposes that the IPS implemented with the
PRF technology is an important supplement, extension, and
inspiration. The PRF signal and the SoOP are inseparable.
The PRF signal not only includes SoOP but also an extension
to SoOP. SoOP aim to utilize nontarget or nontask signals to
achieve tasks [15], [16], [17], such as navigation tasks using
cellular network, WiFi, broadcasting, communication satellite,
etc. The PRF spectrum is not only a utilization of the SoOP
but it also capture the scenario signature, such as building
structures, metallic objects, liquids, humans, and nontarget RF
signals. In addition, the PRF spectrum can also capture mul-
tiresource multipath, large-scale fading, and small-scale fading
as features. Therefore, we propose a utilized PRF SoOP and
captured scenario information 3-D IPS (PRO-3DIPS). Fig. 1
shows an imaginary PRO-3DIPS capturing multiple SoOP
sources and scenario signatures, which is able to find the most
impacted frequency bands and then achieve high-precision
positioning. Compared to active RF technologies, such as WiFi
that utilize SoOP, PRF sensing only requires a receiver and
does not rely on any specific equipment or local transmitter
to achieve indoor positioning. It is worth noting that the PRF
technology does not apply any SoOP prior, and it is not lim-
ited to any frequency band of SoOP, which enables PRF to
use any SoOP that are beneficial to the task. Therefore, the
PRF spectrum is capable of capturing biological information,
building structures, targets, etc., in the scenario, and can fea-
ture multiple RF signal sources, multipath, and multifading.
Table I shows the comparison of the characteristics of PRF
and active RF positioning system with WiFi as an example.

B. Related Work

We summarize the relevant RF-based IPS in terms of
technology, experimental setup, and performance. Positioning
problems in machine learning are usually regression meth-
ods rather than classification or clustering tasks because
they require specific coordinates. For the regression problem
of positioning, machine learning is a common solution in
recent literature [18], such as support vector regression (SVR)
[19], [20], Gaussian process regression (GPR) [21], [22],
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TABLE I
COMPARISON OF PRF AND WIF1 POSITIONING SYSTEM

Positioning PRF WiFi

System

Mechanism RSS (SoOP fading | RSS (Multilateration; finger-
fingerprinting) printing); CSI (AoA; ToF)

Frequency Full frequency band 2.4 GHz; 5 GHz

Range

Device One receiver only Several APs and receiver

Price ~ $30 (RTL2832U) Depends on APs

Performance Depends on scenario, | Depends on APs number and
task, and frequency locations

3D Positioning | Naturally available Additional APs required

Capability

Large-scale More frequency | More APs required

Application required

Customizability | Customizable Customizable APs number
frequency and locations

Power Low High (signal transmission)

Consumption

Application Not valid in signal | Negligible

Restrictions shielding scenarios

AP refer to access point; AoA refer to Angle of Arrival; ToF refer to Time-
of-Flight.

TABLE II
INDOOR POSITIONING TECHNIQUES AND PERFORMANCE OF RF

Reference | Technology [Regression | Area (m?) [Sample |RMSE
Algorithm Distance | (m)
(m)
[21] WiFi GPR 15.6 x 16.3]0.5 1.29
[28] GPR 232 x 256(1.6 5.12
[29] GPR 13 x 29 2 0.96
[30] SVR 213 x 31.8|2 1.48
[31] k-NN 16 x 21 2 0.66
[32] k-NN 18 x 50 1 0.80
[33] DL 16 x 32 1.5 1.79
[34] DL 35 x 50 20 3.68
[8] RFID SVR 56 x56 [0.6 0.20
[23] k-NN 36 x 48 |04 0.15
[35] Bluetooth Polynomial |40 x 60 18 2.44
Regression
40 x 60 9 1.74
[36] USRP Neural 3 x5 0.2 0.10
Network
0.4 0.32
0.6 0.39

k-Nearest Neighbor (k-NN) [23], [24], as well as deep learning
(DL) [25], [26], etc. Table II summarizes some works utiliz-
ing RF technologies and regression algorithms, as well as
their performance. The performance of IPS is usually evalu-
ated by the root-mean-square-error (RMSE) of the observation
coordinates and the predicted coordinates. Probability density
function (PDF) and cumulative distribution function (CDF) of
positioning are also a common evaluation metrics because they
intuitively present the changing trend of errors and confidence
levels [27].

3-D IPS is a more challenging task, and a general solu-
tion does not yet exist. A popular method is computer vision
(CV) or light detection and ranging (LiDAR)-based simulta-
neous localization and mapping (SLAM) [37], [38]. Although
SLAM is a proven method, it suffers from its high cost and
high requirement for computing resources. 3-D IPS based on
RF technologies, such as WiFi and RFID is still in its infancy.
Chen et al. [39] proposed a WiFi-based semi-supervised
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machine learning method that achieves positioning by compar-
ing the distance between the user and transmitters, which are
placed at different heights. Another WiFi-based method [40]
proposes 3-D positioning through azimuth and elevation AoA
estimation in CSI. However, this method also requires the
cooperation of multiple transmitters and the error increases as
the number of transmitters decreases. Moreover, [41] proposes
a fake RFID-based 3-D IPS that adds additional antennas in
the vertical direction. Although it has a surprising error that
RFID IPSs usually have, it is evident that it cannot be extended
to a general case since it cannot add antennas in the vertical
direction without limit. Our proposed PRF system does not
have a series of drawbacks that exist in the related literature
and also achieves fairly comparable performance. Even more
commendable is that the PRF system is an innovative modality
used in 3-D positioning tasks.

C. Previous Work and Contributions

In our previous work, PRF sensing technology has achieved
some remarkable results on human sensing, such as human
occupancy detection [42], authentication [43], [44], activity
recognition [45], and positioning [46]. These works achieve
human sensing using the RF spectrum of human signatures,
which is based on the sensitive nature of RF signals to liquids.
Previous work [46] introduced a PRF-based human position-
ing method, which fixes six PRF sensor antennas and collects
human spectrum data at different positions in the scenario to
achieve human positioning. However, this article changes the
target of interest from a human to the RSS distribution of the
scenario. We use the RF spectrum of the scenario signature to
implement IPS that other researchers regard as noise.

Since the PRF sensing technology does not use any a priori
knowledge of any transmitters, the PRF sensor is not lim-
ited to any specific receive frequency. Although it is feasible
to use the collected full-band PRF spectrum for positioning,
too many features consume resources, decrease accuracy, and
decrease sampling rate, which is not ideal for a real-time IPS.
Therefore, finding the frequency in the specific scenario with
the most impact is one of the most critical factors affecting
regression accuracy. For data dimensionality reduction meth-
ods, common solutions include principal component analysis
(PCA), factor analysis (FA), independent component analysis
(ICA), etc. [47], [48]. Previous work [42] used the PCA algo-
rithm to find several human-sensitive frequency bands from
the full frequency band. Compared to PCA, which shows the
features with the most significant variance, explainable arti-
ficial intelligence (xAl) technologies provide another solution
for the relationship between the input and output of a machine
learning model. SHapley Additive exPlanations (SHAPs) [49]
provides interpretability, visualization, and interactivity of the
model output, which gives us another choice for finding the
most impact frequency band.

The work reported in this article demonstrates a high
precision PRO-3DIPS. SHAP is used to find the most impact
PRF band. After targeted sampling of this particular frequency
band, a 3-D RSS distribution is demonstrated. After the param-
eterization, analysis, and modeling of GPR to the 3-D RSS
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distribution, our positioning framework is validated as an
accurate, reliable, and low-power consumption solution. The
contributions of this article are:

1) Observation, comparison, and character study are imple-
mented for the PRF spectrum in different positions.
SHAP, PCA, and statistic variance are used to find
the frequency band most impacted by the scenario that
differentiates the PRF spectrum at various positions.

2) RSS distribution of a 90-gridded position spectrum is
collected in an indoor scenario at the most impacted
frequency band. To the best of our knowledge, this is the
first paper to sample, observe, and compare indoor RSS
distribution in 3-D space and at different frequencies.

3) GPR conforming to 3-D positioning and PRF spectrum
is established, parameterized, and trained. The proposed
GPR with Matern kernel regressor can lead to posi-
tioning performance of 0.292 m in RMSE, 0.987 in
coefficient of determination R%, and 0.546 m in 95%
confidence error (CE). The achieved performance high-
lights PRF technology as a new modality for indoor posi-
tioning, and it is worth commenting that it is inherently
endowed with the capability of 3-D positioning.

The presentation of this work is as follows. Based on obser-
vations of the current state of RF sensing technology and
solutions to regression problems, the methodology of PRO-
3DIPS is described in Section II. Section III presents the
experimental setup, phenomena, and results. Some discussions
of the experimental results and comparisons with the state-of-
the-art are given in Section IV prior to the conclusions and
future research in Section V.

II. METHODOLOGIES

This section introduces the proposed 3-D IPS, includ-
ing a software-defined radio (SDR)-based PRF technology,
frequency band selection algorithm, GPR, and three evaluation
criteria.

A. Passive Radio Frequency Technology

PRF technology is one of the core technologies in PRO-
3DIPS. PRF system passively receives ambient RF signals in
the scenario. It neither deploys new transmitters nor trans-
mits, rejects, shields, and is unaware of RF signals. PRF
system also does not use any a priori information about the
possible existence of RF transmitters. PRF technology has
many advantages, including low cost, harmless, customized
frequency band selection, etc. SDR is a common technique
to control the parameters of PRF sensor at the software level,
such as frequency range, step size, sampling rate, number of
samples in in-phase and quadrature (IQ) data, etc. Therefore,
the low-cost RTL-SDR RTL2832U was chosen as the PRF
sensor to passively receive the spectrum, as shown in Fig. 2.

The center frequency range B is set from 24 to 1000 MHz,
with a sampling step size of 2.4 MHz, a bandwidth of
1.2 MHz, and a sampling rate of 2.4 MHz. At the center
frequency f determined by each sampling step, the sample
number N of 4096 IQ data were collected, respectively. The
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Fig. 2. RTL-SDR RTL2832U DVB-T tuner dongle and antenna used to
passively receive the spectrum.

sampling time for each center band is about 2 ms. The aver-
age power P in dB at each center frequency, which is also the
PRF spectrum used in our experiments, can be calculated as

il pr()
N/2
where the average spectrum power P is a function of the center
frequency f. pr is the power at each center frequency f and

can be calculated from IQ data
2
Vi

Pr=5 )

where Vy is the voltage data at the center frequency f. R is
a typical input impedance, rated at 50 €2 by the RTL2832U.
1Q data are collected alternately by SDR, and voltage data Vy
can be obtained by the raw 8-bit quadrature IQ pair Iy and Qf

2 2
v9+%_1

255/2

Therefore, we can establish the following mathematical
model, for n pairs of observations will be given by D
and C

V= 3)

C=Dw+e “4)

where w € R”*3 is a transform matrix between the observed
data set D € R"™™ and the observed coordinate set C € R"*3
of the GPR model. R is the set of real numbers. D and C
are from the PRF spectrum P(f) and the corresponding 3-D
coordinates, respectively, which are defined as

d; = {Pi(fi), Pi(f2), ..., Pi(f)If € B,m e N};, &)
ci = (x,y,2); (6)

where d; is the ith sample of set D, and c; is the corresponding
coordinate. N is the set of natural numbers. (x, y, z) is the 3-D
coordinate corresponding to abscissa, ordinate, and applicate,
respectively. The Gaussian additive white noise present in the
system is represented by ¢, which is independent and identi-
cally distributed (i.i.d.) Gaussian distribution with zero mean
and variance o

£~ N(o, a,f). (N
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B. Frequency Band Selection

Frequency band selection is necessary for PRF sensing
technology. Dimensionality reduction or feature extraction
techniques are not used in the proposed PRO-3DIPS because
the physical meaning in the original data needs to be preserved
for further analysis. The PRO-3DIPS method selects some
frequency bands from the full frequency band for data col-
lection and regression tasks, since they can effectively save
data collection time, economize resources, and improve regres-
sion accuracy. Depending on different tasks and scenarios, the
frequency band selected differs. In previous work [42], the
human sensitive frequency band was found to be around 500
to 700 MHz. The frequency band selection algorithm aims
to find the frequency band with the most impact, which is a
precondition of achieving regression. SHAP, PCA, and statis-
tical variance are used to find the most impact frequencies,
respectively.

PCA is one of the essential dimensionality reduction meth-
ods, which replaces the original data by finding the most
impact features in the data with eigenvector selections. PCA
is used in this article only to select some of the most impact
frequencies. Common PCA toolkit such as Scikit-learn uses
singular value decomposition (SVD) to find the most impact
components in feature space. The features corresponding to
the most significant variance are additionally used for sec-
ondary verification. In addition to PCA and statistical variance,
a common solution is to use SHAP to find the most impact
frequencies. SHAP is a game-theoretic approach to interpret-
ing the output of a machine learning model. SHAP supports
visualization and interpretability of features, so SHAP has
also become one of the solutions to find the most impact
frequencies.

The selected frequency band is worth investigating in
the experiment. According to our observations and previous
work [42], the most impacted frequency bands are multiple
randomly distributed over the whole frequency band. Each
frequency band will include one or several of the most
impacted frequencies. In this work, we only want to select
a single frequency band containing several consecutive
frequencies. A single frequency band can not only limit sam-
pling time and save computational resources but also achieve
comparable accuracy, be easy to implement, and provide prior
knowledge for further work. Therefore, the selected frequency
band B, can be obtained by SHAP, PCA, and statistical vari-
ance. Specifically, the SHAP, PCA, and statistical variance
methods first obtain the most impacted frequency sets Bspap,
Bpca, and By, respectively. First, calculate the weight of
each frequency in B;, which is equal to the sum of the impact
of the three methods. Second, calculate the weight of each B;
set, which is equal to the sum of the impact of the frequencies.
Finally, compare all the B; weights to get the set with the most
impact, i.e., B;. The algorithm of frequency band selection has
been summarized in Algorithm 1.

C. Gaussian Process Regression

After selecting the frequency band Bg in Algorithm 1,
we recollected the data in this particular selected frequency
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Algorithm 1 Frequency Band Selection
Input: D, C
Output: B
Bsuap < SHAP(D, C)
Bpca < PCA(D)
Byar < Var(D)
for i < 1 tom—4 do
Bi < {fi. fi+1, fir2. fir3. fira)
Sim; < Similarity of B; and {Bspyap, Brca, Bvar}
end for
§ <— argmax Sim;

1
BS <~ {f:vaY+17f.;‘+2v.f:Y+37f:Y+4}

band to implement GPR. For a concise presentation, all D
in this section are data collected on B;. The 3-D position-
ing task based on the PRF spectrum can be considered as
solving a GPR problem with multiple inputs and multiple
outputs. Following the introduction and analysis of GPR
in [50] and [51], we build a mathematical model based on
the PRF data. According to Bayesian Inference, the posterior
distribution is given as

p(w |D, C) — IM (8)

p(CID)

The derivation of the posterior distribution p(w|D, C) is elab-
orated and derived in [50]. According to the posterior distribu-
tion of w and given D and C, the corresponding approximate
coordinates C' € R">3 can be obtained from D' € R">™,
Under the assumption that the data can be expressed as a joint
Gaussian distribution with zero mean and covariance given by

C K K
|:é/:| NN<07 I:K/ K//])- (9)
where K, K’, and K" are defined as
K=D"s,D
K =D"x,D=D"%,D

K'=D"x,D'. (10)

According to the assumption of transform matrix w ~
N(0, X,,), the mean and covariance of C and C’ equal to

E(D'w) =D'E(w) =0

cov(Dw, D'w) = E[(Dw)(D'w)] =K' (11)

It can be seen that the covariance cov(Dw,D'w) gives the
GPR model the ability to distinguish between the observation
data D and the predictive data D/; which can predict corre-
sponding approximate coordinate C’'. The kernel K’ is used to
provide the similarity between two data vectors. This similar-
ity measure provides the basis for GPR theory, which takes
into account several aspects, including correlation with other
components, anisotropy, periodicity, etc. The corresponding
approximate coordinates C’ from the predictive data set can
be obtained by

-1

C=K(K+o}) C (12)
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Some kernels commonly described in GPR [50], [51] are
also selected for consideration, including the radial basis func-
tion (RBF) kernel kgrpf, rational quadratic (RQ) kernel kgrq,
exponential sine squared (ESS) kernel kgss, and Matern kernel
kyr. These four kernels have similar functional forms, which
can be expressed as

k.(d, d’}oz,l) ek (13)
where k. represents different GPR kernels, d is a sample vector
of observation data set D, d’ is a sample vector of predictive
data set D', the two hyperparameters are o> is variance and
I € R is length scale vector. It is necessary that [ is set to be
anisotropic because all features in d have different properties,
which is confirmed by the RSS distribution experiments, as
shown in Figs. 6 and 7. Also, the upper and lower bounds of
I need to be strictly set according to prior knowledge. Because
when [ is set too large, the fitted model will ignore some details
in the data and lead to underfitting, while if [ is set too small,
the fitted model will be too detailed and lead to overfitting.
Noise in the model is usually explained by the white kernel,
which explains noise in the data as i.i.d.

. e a
ky(d,d') = {ncnse level, ifd=d

0, 0.W. (14

where the hyperparameter noise level reflects the noise in the
data. The white kernel is usually added with other kernels
as the total kernel of the GPR model. Choosing a suitable
kernel is crucial for the fitting of the GPR model, which effec-
tively improves the accuracy and robustness of the model.
A common GPR kernel solution is the additive form of
these single kernels above. GPR can automatically fit these
kernels and optimize the parameters, respectively. Although
the multiparameter of multikernel provides room for model
optimization, the increase in computational complexity may
lead to excessive resource consumption for model fitting.

For positioning problems, the evaluation criteria usually
have RMSE to determine the Euclidean distance between true
and predicted coordinates

15)

Coefficient of determination R> determines the relationship
between data D, its predicted coordinate C’, and true coor-
dinate C’ in tl}e GPR regression relationship, that is, the
proportion of C’ that can be explained by the D’. In simple
terms, if the average power collected at the same coordinates
is unchanged, then, the degree of variation of the coordinates
will decrease by R?

\C’—c”2
R=1-—2 (16)
je-el.

where C’ is the mean vector of C'. F is the CDF of RMSE,
which can intuitively reflect the speed of RMSE accumula-
tion. F' is also an essential evaluation criterion for positioning
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Algorithm 2 Kernel Selection
Input: D, C, D', C
Output: kernel
1: for ker in P({kRBFs kRQ, kEss, kM}) + ky do
A -1
2: Cl(ker) <« K/(ker) (K + (72) C

> (12)

3: SCOI’e(ker) <~ RMSE(ker) + (1 — (ker))
+ CE(ken) > (15), (16), (17)
4: end for
5: kernel <— argmax Score ke
ker
(K PRF Antennaz= 1 m
E’ PRF Antenna z= 0.5 m
6.15m (K PRF Antenna z=0m
ST l
v | |
430m, } '
(.l Z)L Printer
/ } TN era
/ I ©
( ;L 8
| 4, b¥H )
| /
/ ) »
242m! Iy 5 ﬁ 8
I / ® o o
| e D
| A g z
y_ e - ——— - __
(5,1,2) b
Television gf’l;;
Fig. 3. Tllustration of the experiment scenario used to collect the PRF spec-

trum. The red, green, and blue antennas are represented as 0, 0.5, and 1 m
from the bottom of the antenna to the ground, respectively. Only a part of the
coordinates of the PRF antenna are marked in the figure.

tasks, especially those with strict requirements. The error cor-
responding to the confidence will be used as a numerical
representation of the error. The CE as

1
CE = Fpyse(¥)

where y is confidence level, the typical confidence level usu-
ally can be set as 90%, 95%, 99%, etc. The GPR model
establishment and kernel optimization have been detailed in
Algorithm 2, where power set P is used to represent the set
of all subsets.

A7)

III. EXPERIMENT AND RESULTS

This section is organized as follows. After the most
impacted frequency band By for indoor positioning is found by
SHAP, PCA, and statistical variance; the RSS-based PRF spec-
trum is collected in B;. GPR and other regressors are used to fit
observation data and make predictions. This section highlights
the experimental setup, phenomenal observation, and results.

A. Experimental Setup

Data collection is done in a living room scenario, which is
illustrated in Fig. 3. In order to avoid the influence of human
activity on the PRF spectrum, the host computer operator is
fixed at the position near the host computer. There are other
objects that may affect the PRF data, such as a television, WiFi
router, printers, etc. are also marked in Fig. 3. The WiFi router
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Fig. 4. Full frequency band PRF spectrum of (2,2,0), (2,5,0), (4,2,0),
and (4,5, 0).

or the host computer’s Bluetooth module will not interfere
directly with the PRF spectrum since they operate in bands
other than B. However, the electrical noise they generate and
the material of their metal may still affect the PRF spectrum.
An experimental scenario with a length of 6.15 m, a width
of 430 m, and a height of 2.42 m is used as a preliminary
verification of the PRF positioning. Ninety gridded positions
as coordinates were set up in 3-D space for data collection.
According to the assumptions and derivations of frequency
band selection and GPR presented in Section II, the system
in this article can be generalized by Scikit-learn and SHAP
toolkit under the TensorFlow framework. In PCA, the number
of components is set to 10 to keep the ten components with
the most significant variance. We prebuild a linear SVM clas-
sifier, which is used to classify samples at different positions.
This classifier is only used for SHAP to explain the impact
of different features on the linear SVM classifier model. The
building of GPR and other regressors also benefits from the
Scikit-learn toolkit for its usability, reliability, and simplicity.

B. Frequency Band Selection

According to Section II-B for the frequency band selection,
we precollected the full frequency band data at four coordi-
nates, e.g., (2,2,0), (2,5,0), (4,2,0), and (4,5,0) to find
the frequency bands that have the most impact on positioning.
Fig. 4 shows the full frequency band PRF spectrum for these
four coordinates. It can be seen that there are minor differences
in the PRF spectrum at different coordinates, which are diffi-
cult to visually distinguish. The difference in the PRF spectrum
is not only due to different spatial coordinates but may also be
due to other factors, such as sampling time, interference, elec-
trical noise, etc. Therefore, it is necessary to use the frequency
band selection algorithm to find the most impacted frequency
band and then use a regressor to achieve positioning.

The ten most impacted frequencies found from SHAP,
PCA, and statistical variance are summarized in Table III.
It can be seen that all three methods give the similar most
impacted frequencies, especially in the frequency 100. 8§ MHz,
all three methods give the same conclusion. SHAP also gen-
erates the visualization of the most impact frequencies, as
shown in Fig. 5. It can be seen that the frequencies from
91.2 to 100.8 MHz have a higher Shapley value, that is, a
higher impact on the model output. Also, in these partic-
ular frequencies, the impact on the model is higher when
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TABLE III
TEN MOST IMPACT FREQUENCIES ARE FOUND FROM SHAP,
PCA, AND STATISTICAL VARIANCE

Ranking BSHAP BPCA ]B\/m— SHAP PCA Variance
(MHz) | (MHz) | (MHz) | Impact Impact Impact
(%) (%) (%)
1st 100.8 100.8 100.8 11.61 67.46 9.84
2nd 91.2 105.6 |98.4 9.31 12.64 8.32
3rd 98.4 180.0 |91.2 7.14 491 6.93
4th 105.6 103.2 103.2 | 3.55 1.94 3.72
S5th 74.4 31.2 96.0 3.40 1.35 3.64
6th 88.8 636.0 |576.0 |3.39 1.13 3.05
7th 1152 | 756.0 |88.8 3.20 0.97 2.66
8th 1104 |31.2 105.6 | 2.08 0.74 2.53
9th 5424 |24.0 74.4 1.79 0.62 2.40
10th 84.0 756.0 |84.0 1.54 0.51 222
High
100.8 MHz ) bee s ] .o
91.2 MHz (AR [} -
98.4 MHz B =
105.6 MHz . |-
74.4 MHz LI B
88.8 MHz o -
115.2 MHz Ll B
110.4 MHz - | - g
542.4 MHz B - ,—5
84.0 MHz - >
540.0 MHz Bed - 5
576.0 MHz et e ©
516.0 MHz R &
96.0 MHz .o W &
153.6 MHz adlly.woe
69.6 MHz - |-
103.2 MHz =ie
81.6 MHz ey -
72.0 MHz R
585.6 MHz B
Z05 0.0 05 Low
SHAP value (impact on model output)
Fig. 5. Frequency ranking that impacts the positioning of linear SVM

classifier is evaluated by SHAP.

the feature value is higher, which is shown by the color
of the sample points. In addition to the SHAP visualiza-
tion, Table III gives the percentage of the frequencies impact
from SHAP, PCA, and statistical variance. For each frequency,
SHAP impact is obtained by calculating the percentage of
the Shapley value to the sum, PCA impact is obtained from
the PCA explained variance, and variance impact is obtained
from the percentage of the statistical variance to the sum.
The selected frequency band B; is obtained by Algorithm 1,
where the similarity is equal to the sum of the three impacts of
the corresponding frequencies. Therefore, we choose 91.2 to
100.8 MHz as the selected positioning center frequency band
Bs with a step size of 2.4 MHz

Bs(MHz) = {91.2, 93.6, 96.0, 98.4, 100.8}. (18)
A total of five frequency corresponding average powers are
used as the features of the data. The collection time for each
frequency is 0.2 s. Hence, the sampling period for PRF posi-
tioning is only 1 s. The frequency band selection algorithm
is one of the most critical feature extraction methods for
PRF, which is able to reduce the number of features from
407 to 5. The advantages include fewer GPR model training
resources, comparable accuracy, and especially the sampling
speed increased by 98.77%.
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Fig. 6. Overall RSS distribution with the antenna is 0 m from the ground
when the frequency is at (a) 91.2 MHz, (b) 93.6 MHz, (c) 98.4 MHz, and
(d) 100.8 MHz. Figures are cubically interpolated to increase resolution.

C. RSS Distribution

For the GPR regressor, the time complexity of model fitting
increases exponentially with the number of samples. Generally
speaking, as the amount of data increases, the computing
resources consumed will increase exponentially. GPR’s ability
to handle small data is surprising, so we limit the number
of samples in the data set to less than 10000. After the
most impacted frequency band was determined, we collected
100 samples each at 90-gridded positions to research RSS dis-
tribution and PRF antenna positioning. Fig. 6 is used to show
the distribution of the overall RSS in the scenario at differ-
ent frequencies; while Fig. 7 highlights the similarities and
differences of sample RSS collected from adjacent coordi-
nates. Fig. 6 shows the overall RSS distribution at different
frequencies with z = 0 as an example. It can be seen that
at different frequencies, the average power RSS distribution
is clustered at different positions in the indoor space, and the
power levels are also different.

The usability and flexibility of GPR have been valued in
recent studies, especially its ability to model in the real world.
We solve the open question of whether GPR is suitable for the
RSS-based PRF spectrum by observing the RSS distribution
at different coordinates. Fig. 7 shows the RSS histogram of
the sample PRF spectrum at different frequencies. It can be
clearly seen that the RSS of different coordinates presents a
Gaussian distribution, and various Gaussian distributions are
distributed on the entire axis. We take (3, 3, 0.5) as a center
point and use six points around it as test points to explore
whether the adjacent coordinates will be confused. Taking
Fig. 7(d) 100.8 MHz as an example, the RSS collected at
the center point has a 99% overlap with the RSS collected
at the test points (4, 3, 0.5), but they do not have any over-
lap at 91.2 MHz. Hence, GPR is able to estimate accurate
coordinates as long as the RSS for both coordinates does not
overlap at all five frequencies. Therefore, we propose GPS
as a regressor for PRO-3DIPS to estimate coordinates for
positioning.
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Fig. 7. RSS histogram of PRF spectrum when the frequency is at
(a) 91.2 MHz, (b) 93.6 MHz, (c) 98.4 MHz, and (d) 100.8 MHz.

D. PRF Positioning

After detailed observation and analysis of the RSS distri-
bution, positioning experiments are conducted on the data set
collected on 90-gridded positions. Since none of the models
used in this article have been tuned, the data set is divided into
training set and test set with a ratio of 0.7 and 0.3. In GPR,
the upper and lower bounds of the length scale are limited
to 0.01 and 100 to prevent overfitting and underfitting. In DL
models, overfitting is prevented by adding a dropout layer of
0.2. Models are implemented on TensorFlow and scikit-learn,
then trained on an Intel Core i9-10850K CPU @ 3.60 GHz,
and a Nvidia GeForce RTX(TM) 3080 GPU.

The GPR model has a variety of optional kernels, as
discussed in Section II-C. According to the similarity of obser-
vation D and predictive data D', it is a challenge to choose
a suitable kernel. The kernel selection is largely dependent
on the data differences of different coordinates. Two coordi-
nates that are far apart should have less similarity. Ideally, the
predictive data is only similar to the data corresponding to the
same coordinate, which means that the kernel function should
have a steep decay. Using prior knowledge, some kernels are
not appropriate for the indoor positioning task, such as kernel
kgss with periodic characteristics, which is also consistent with
the experimental results. Table IV only shows three representa-
tive kernels with high performance as examples, e.g., a default
kernel krpp, a total kernel k1o including all kernels, and a
highest performance kernel k.

It is expected that ky; has the highest performance because it
has an anisotropic length scale and is steeper than krpp. It is
worth noting that although kroa also includes kyy itself, it is
not prominent by comparison. This may be because the addi-
tion of other kernels makes other coordinates have greater
weights for the predicted coordinates, which increases the
variance of the weight distribution. Fig. 8 shows the corre-
lation distribution of kj; with default parameters and kj; after
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TABLE IV
PERFORMANCE EVALUATION OF GPR AND SEVERAL REGRESSORS

Regressor | RMSE (m) | R? 95% CE (m)
GPRy,, 0367 0.978 0.779
GPRy  |0.296 0.987 0.593
GPRy,, 0.292 0.987 0.546
SVR 0.565 0.947 1.298
k-NN 0.311 0.985 0.532
DT 0.630 0.932 1.056
RFR 0.387 0.976 0.822
MLP 0.556 0.970 1.069
CNN 0.662 0.957 1.287
RNN 0.608 0.964 1.243
(4.3.0 20 5 (4.3.0 2.0
1.5 - 4 1.5 -
S S
>3 1.0 % >3 1.0 %
05 2 05
0.0 1 IR oo
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Fig. 8. Spatial data correlation distribution is calculated by, (a) default kpy,
(b) trained kpys. The target coordinates are (4, 3, 0) represented by red dots.

training. The hyperparameter of trained kys is given by

ky(o = 1.41,1 = (0.11, 0.0946, 0.147, 0.132, 0.0951))
ky (noise level = 0.00693). (19)

It can be seen that the correlation distribution of the trained
kps kernel is strongly correlated with the predictive coordinate.
However, the correlation of the default ky; kernel is widely
distributed over adjacent coordinates.

To illustrate the excellent performance of GPR on the posi-
tioning regression problem, several regressors in the related
literature are selected for comparison, and they are also inte-
grated with the Scikit-learn toolkit. Since the 3-D positioning
task is a multioutput problem, it is not suitable for some com-
mon regressors such as SVR. Although the Scikit-learn toolkit
gives an extension as a multioutput regressor, it actually splits
the multioutput regressor into multiple single-output regres-
sors, which obviously reduces accuracy. SVR also uses the
Matern kernel in our experiment. Other multioutput regressors
were also chosen for comparison, including k-NN, decision
tree (DT), random forest (RFR), multilayer perceptron (MLP),
convolutional neural network (CNN), and recurrent neural
network (RNN). It is worth noting that k-NN, DT, and RFR
are all highly integrated and widely used models, and the
parameters of their default models are suitable for most of the
data. However, MLP, CNN, and RNN have multiple adjustable
parameters and internal structures, which will significantly
affect the accuracy. To preliminarily examine the ability of DL
in PRF positioning regression, we set up three hidden layers,
each with 128 units, the loss function of MSE, the optimizer
of Adam, the learning rate of 0.01, and 200 epochs to observe
their performance. All three types of DL use roughly similar
structures and trainable parameters.

Table IV shows that several GPR models have candidate
kernels and several other popular regressors. After GPR fitting
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Fig. 9. GPR model prediction results for three test coordinates. The black dots
represent the actual coordinates. The yellow, cyan, and purple dots are three
randomly selected example coordinates, respectively, and the corresponding
prediction results are represented by red, green, and blue triangles.
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Fig. 10. RMSE versus probability curve predicted by GPR model.

and prediction on the test data set, we get an average RMSE of
0.292 m on the test data set and a coefficient of determination
R? equal to 0.987. Fig. 9 gives the predicted results for three
example coordinates. It can be seen that the prediction results
are better, especially when the coordinates are in the center of
the experiment scenario. The test coordinate (6, 1, 1) farther
from the center of the experiment scenario and closer to the
wall has a larger error in its prediction.

Fig. 10 gives the curve of RMSE versus probability, i.e.,
PDF and CDF. It can be observed that the RMSE is equal
to 0.546 m for 95% confidence, which means that for any
prediction, we have 95% confidence that the prediction has an
error of less than 0.546 m.

E. Test on Nontrained Positions

Generally speaking, the uncertainty of GPR model
prediction is lower where the training data points are denser;
and the model prediction uncertainty is higher in the area
where the training data points are sparse. It is challenging
to the uncertainty of the GPR model, which will be strongly
reflected in the nontraining positions. To better demonstrate
the performance of the proposed PRO-3DIPS, we conduct tests
on nontrained positions. We randomly select one position from
the 90-gridded positions as test coordinates, and the remain-
ing positions are used as a training data set ten times. Fig. 11
shows the prediction results of these eight models at non-
trained positions, where GPR has a lower average RMSE. It
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Fig. 11. Test on ten nontrained positions.

can be seen that the error of GPR is not very stable, which has
almost twice the error range at different positions. Predictive
instability may be due to the fact that the RSS in the scenario
is not evenly distributed. It will produce significant changes
in some areas due to small-scale fading, which is also one of
the characteristics of PRF-based positioning systems.

IV. DISCUSSION

Our research provides initial evidence for PRF technol-
ogy as a solution for obtaining indoor RSS distribution and
3-D positioning. It has been shown to have visualization
and real-time application prospects. In this article, two major
contributions have been highlighted: observation of RSS dis-
tribution and PRF technology for positioning. In this work, the
RSS distribution is only used to achieve indoor positioning.
However, it is expected that studying the RSS distribution can
significantly assist and facilitate RF sensing techniques. For
example, monitoring RSS distribution to detect building struc-
tures, demonstrate the pattern and distribution of interference
in active RF sensing, develop other PRF sensing applications,
remote sensing of the earth, etc. The definition of a PRF
system in this article differs from that in the related litera-
ture. We highlight the definition of the PRF system that does
not deploy new transmitters rather than other passive RFID
papers that focus on the presence of an internal power source
for the tag. The proposed PRO-3DIPS is able to use ambient
SoOP for positioning without knowing any a priori information
about possible existing transmitters. It is worth noting that the
RF of broadcasting in the Detroit metropolitan area where the
experimental scenario is located ranges from 88.1 to 107.9 FM
[52], [53], which coincides with our B,. Therefore, we believe
that around the Detroit metropolitan area, the frequency band
most impacted by positioning will be fixed. Thus, the proposed
PRO-3DIPS can be easily extended to other scenarios, such
as classrooms, laboratories, factories, warehouses, etc. To the
best of our knowledge, the novel work proposed in this article
is the first work to realize 3-D indoor positioning via PRF
technology.

Simple numerical comparisons with the techniques and
performances mentioned in Table II are inaccurate since the
RMSE is not only related to the proposed method but also
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Fig. 12. Performance comparison with related literature.

to the experimental setup. For active RF technology, espe-
cially WiFi, the RMSE and performance of the system are
also related to the number of transmitters. Our proposed PRO-
3DIPS does not deploy any transmitters, which is one of it’s
advantages. To better illustrate the excellent performance of
the PRO-3DIPS, considering that the RMSE is usually related
to the sampling distance, the results of the proposed method
compared with the literature are shown in Fig. 12. It can be
seen that the proposed work is below the reference trend
line, which means that the performance of the PRO-3DIPS
is higher than most of the relevant literature. The PRO-3DIPS
is only compared with other 2-D IPSs, for reasons other than
obtaining better accuracy on more challenging tasks and, more
importantly, because there are only a few 3-D positioning tech-
nologies currently available. These techniques have only the
disadvantages of low accuracy, complex configuration, and
difficulty to expand and are not recognized as generalized
solutions.

V. CONCLUSION

This work presents an RSS-based PRF monitoring and 3-D
IPS. After sampling the selected frequency band, compara-
ble results are obtained according to the GPR model. After
using the frequency band selection algorithm to find the most
impacted frequency band, a GPR model is built by character-
izing the RSS distribution in 3-D space to achieve positioning.
We conducted a series of experiments on three evaluation cri-
teria, and the results include RMSE of 0.292 m, coefficient of
determination of 0.987, and 95% CE of 0.546 m. The proposed
PRO-3DIPS is significantly better than the state-of-the-art,
which can promote the wider use of SoOP.

Future work includes further verifying the PRO-3DIPS,
including real-time, anti-interference capability, and large-
area applications. For a positioning system, its real-time
performance is one of the essential evaluation criteria. The
real-time performance is initially discussed and improved in
this article, that is, the improvement of the sampling rate from
the frequency selection algorithm. Another optional parameter
is to reduce the number of IQ samples mentioned in Eq. (1).
In addition, the RTL-SDR device is selected as the PRF sen-
sor in this article for low-cost consideration, and a higher
performance SDR device can be used to develop a promising
real-time positioning system. The anti-interference capability
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of PRF is also a challenge. Previous work has confirmed that
the PRF spectrum can be affected by human position and
activity, and is also sensitive to metallic objects. Multisensor
fusion may be a practical solution. This article proposes to
use PRF for positioning and conducts preliminary experi-
ments in the living room scenario. Further experiments are
planned to extend the PRF positioning technology to larger
area experimental scenarios, such as a university building.
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