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Smart Pressure e-Mat for Human Sleeping Posture
and Dynamic Activity Recognition
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Abstract—With the emphasis on healthcare, early childhood
education, and fitness, non-invasive measurement and recognition
methods have received more attention. Pressure sensing has been
extensively studied due to its advantages of simple structure, easy
access, visualization application, and harmlessness. This paper
introduces a smart pressure e-mat (SPeM) system based on a
piezoresistive material Velostat for human monitoring applica-
tions, including sleeping postures, sports, and yoga recognition.
After a subsystem scans e-mat readings and processes the signal,
it generates a pressure image stream. Deep neural networks
(DNNs) are used to fit and train the pressure image stream
and recognize the corresponding human behavior. Four sleeping
postures and five dynamic activities inspired by Nintendo Switch
Ring Fit Adventure (RFA) are used as a preliminary validation
of the proposed SPeM system. The SPeM system achieves high
accuracies on both applications, which demonstrates the high
accuracy and generalization ability of the models. Compared
with other pressure sensor-based systems, SPeM possesses more
flexible applications and commercial application prospects, with
reliable, robust, and repeatable properties.

Index Terms—Pressure sensor, human sensing, activity recog-
nition, healthcare, deep learning.

I. INTRODUCTION

HUMAN activity recognition (HAR) aims to identify
activities through a snapshot of observations of the

subject’s behavior and environmental conditions. Research on
HAR has been most widely used in healthcare [1], [2], sports
[3], human-computer interaction (HCI) [4], security [5], and
robotics [6]. The mainstream mechanism of HAR is divided
into wearable sensors and external devices. Wearable sensors
are widely used in the HAR field [7]–[10], because of they fit
to human body, valid signal, compact sensor size, better spatial
freedom, and the ability to work in various complex environ-
ments. However, wearable sensors suffer from the drawback
of requiring the subject to wear or mount multiple sensors on
different parts of the body. External devices are deployed to
observe, detect, recognize, and segment human features in the
scenario. Vision-based recognition methods involve computer
vision (CV) [11]–[13], usually using RGB, depth, infrared, and
thermal imaging cameras. The basic idea is to take the whole
image as input and show the pixel coordinates of key points of
the body. Because of the non-contact measurement, the wider
corresponding spectral range, and the ability to work stably
for a long time for vision inspection, CV systems are widely
used in industry, agriculture, defense, transportation, medicine,
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Fig. 1. Schematic illustration of the SPeM system for human activity recogni-
tion. Different human activities generate distinct pressure distributions, which
in turn result in varied resistance distributions. These resistance distributions
subsequently give rise to diverse voltage distributions, enabling the generation
of a stream of pressure images classified into different activities by a deep
neural network.

entertainment, and so on [14]. Vision-based HAR has some
inherent limits, e.g., the data acquisition is seriously affected
by the lighting or temperature of the environment [15] and
involves privacy concerns [16]. Other kinds of external HAR
methods, such as radio frequency (RF) sensors [17], [18], can
accurately classify human subjects and activities, but most of
them are hard to visualize human behavior.

A. Velostat-Based Application

Inspired by the mechanism that humans have sensory
functions when they are in direct contact with the external
environment [19], tactile sensing is widely used in the fields
of intelligent HCI technology and biomedical monitoring,
which is an essential means of data acquisition, analysis, and
control of machines to perceive the external environment.
Pressure sensing is the tactile sensing mode used in this
paper. It has diversified production methods, strong versatility,
and convenient configuration, ensuring lower production costs
and more uses. Pressure sensors have multiple sub-categories,
including capacitive, piezoelectric, optical, piezoresistive, etc
[20]. Velostat [21], also known as Linqstat, is a packaging
material made of polymer foil impregnated with carbon black
to make it conductive. Velostat-based piezoresistive pressure
sensor arrays have been widely studied and used in recent
years. Despite its non-ideal electrical properties and crosstalk
in numerous recent studies [22]–[24], its low price, flexibility,
and scalability have attracted attention. In this paper, we select
a Velostat sensor array as a tool to collect pressure distribution
and complete HAR with deep learning (DL).

The pressure sensor array aims to convert the vertically
oriented pressure input into a standard grayscale image. With
DL algorithms such as convolutional neural networks (CNNs)
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART PRESSURE SENSOR ARRAY TECHNOLOGY.

Literature Tasks Material Length × Width
(m × m)

Resolution
(mm2/pixel)

Price (USD) Foldable

Tactilus [25] N/A (Commercial Sensor System) ? 1.830 × 0.603 31.0 × 37.7 7200 ?

Tekscan 5400N [26] N/A (Commercial Sensor System) ? 1.060 × 0.640 17.0 × 17.0 ? ?

Fatema et al. [27] • Object Movement Detection Velostat 0.300 × 0.300 75 × 75 ? 7

Yuan et al. [22] • Object Recognition Velostat 0.140 × 0.140 5 × 5 25 7

Sun et al. [28] • Respiratory Waveform Reconstruction Velostat 0.385 × 0.360 9 × 9 ? 3

Wan et al. [29] • Sitting Posture Recognition ? 0.365 × 0.365 11.5 × 11.5 150 7

Yuan et al. [30] • Sitting Posture Recognition Velostat 0.381 × 0.381 11.3 × 11.3 45 3

Tang et al. [31] • Sleeping Posture Recognition Velostat 2.000 × 1.000 100 × 100 51 (sensor) 7

Hu et al. [32] • Sleeping Posture Recognition Velostat 1.800 × 0.900 54.5 × 27.2 130 (sensor) 3

Hudec et al. [33] • Sleeping Posture Recognition Velostat 0.900 × 0.900 100 × 100 ? 3

Sundholm et al. [34] • Activity Pattern Recognition CarboTex 0.800 × 0.800 10 × 10 ? 3

Zhou et al. [35] • Subject Gait Identification CarboTex 1.800 × 0.800 15 × 15 ? 3

Wicaksono et al. [36] • Activity Pattern Recognition Polypyrrole 0.450 × 0.450 25 × 25 ? 3

This Paper • Sleeping Posture Recognition
• Dynamic Activity Recognition

Velostat 2.030 × 1.525 67.3 × 52.3 220 3

3 Yes, ? No report, 7 No.

that have excellent performance in image recognition and
processing, the framework of DL and pressure sensor array
is able to classify contact objects with high accuracy. Tang et
al. [31] designed a pressure mattress with Velostat material for
hospice care of the elderly. The internet of things (IoT) based
solution used sensors to record the patient’s posture-related
data and transmitted it to the cloud for further processing. Hu
et al. [32] developed an on-the-fly human sleep recognition
system using pressure sensitive conductive sheet and a four-
layer CNN architecture for sleep classification, with transfer
learning to prevent overfitting and improve classification accu-
racy. Yuan et al. [22] established an object recognition broad
to classify ten objects and conducted a systematic material
analysis and study of Velostat, including resistance sensitivity,
quasi-static response, and crosstalk issues. Zhang et al. [37]
focused on gait recognition using a combination of pressure
signals and acceleration signals to make up for the lack of
data provided by a single sensor and transmitted the data to
a computer for signal processing, and building a k nearest
neighbor (kNN) model to test gait pattern recognition effect.
Chen et al. [38] explored DL algorithms including ResNet50,
InceptionV3, and MobileNet to identify differences in the
response of walking speed to plantar pressure. Jun et al. [39]
performed pathological gaits classification, feeding the sequen-
tial skeleton and average foot pressure data into a recurrent
neural network (RNN) based encoding layers and CNN-based
encoding layers, respectively. The method effectively extracted
features, then output features were connected and fed to a
fully connected layer for classification. Ghzizal et al. [40]
used transfer learning of a pre-trained CNN to classify patients

with Parkinson’s disease. Tactile perception is an important
research direction in the field of robotics and artificial skin. We
summarize the details of the state-of-the-art pressure sensor
array technologies in Table I.

B. Dynamic Pattern Recognition

Pressure pattern in the physical world, especially tactile
sensing in relation to humans, is a dynamic modality. Different
people have different physical characteristics and behavioral
habits, which affects the generation of pressure distribution.
Meanwhile, the non-ideal properties of most pressure sensors,
especially piezoresistive sensors also cause nonlinear effects
on resistance and conductance. It is difficult for traditional
classifiers to handle such tasks. Therefore, it is a trend to use
DL algorithms to classify a series of dynamic pressure images,
known as a stream of pressure images. There are traceable
solutions for image stream or video recognition. In the field
of image sequence recognition, convolutional recurrent neural
network (CRNN) is used for text extraction of language in
image [41] and video classification [42], in which long short-
term memory (LSTM) is used to integrate CNNs. It is also a
common practice for researchers to recognize dynamic pres-
sure image sequences using integrated CNNs. Song et al. [43]
utilized a similar CRNN architecture to identify four modes of
flexible tactile sensors, including stroking, patting, kneading,
and scratching. Sundaram et al. [44] demonstrated tactile
gloves for object-grasping robotics, in which a convolutional
layer was used to integrate CNNs and employed to recognize
the type of objects and judge the responding gestures of the
robotics. Therefore, deep neural network (DNN) algorithm is
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used as the pressure pattern recognition method in this paper,
and the performances of the three methods are discussed and
compared.

C. Motivation and Contribution
Our motivation received inspiration and impetus from aug-

mented reality, HCI, healthcare, etc. This work aims to in-
troduce a flexible, non-invasive, portable, and inexpensive
pressure sensor system into the above areas of application.
On the one hand, pressure can be a Boolean feedback as
a single-dimensional signal detection method. On the other
hand, the pressure distribution formed by the human body
on a pressure array can generate a visualized pressure image.
Gumus et al. [45] presented a textile-based pressure sensor
array, which was capable of displaying the shape of objects,
recognizing gestures, and early childhood education. Children
could input and display numbers, arithmetic symbols, and
English letters on an Android mobile phone by pressing them
on the education platform. Wicaksono et al. [36] developed a
knitted intelligent textile mat to control the standing, walking,
and running behavior of the characters in the Minecraft video
game. Therefore, this paper also explores the application of
pressure sensor arrays in gaming, such as sports and yoga.
Specifically, an e-mat made of a pressure sensor array is
placed in an indoor environment, and activities are classified
according to the different pressure distributions generated by
different activities such as standing, running, sitting, lying, etc.

In this paper, a pressure sensor-based system, smart pres-
sure e-mat (SPeM), for human sleeping posture and dynamic
activity recognition is proposed, as shown in Fig. 1. SPeM
consists of a pressure sensor array e-mat based on Velostat
piezoresistive material and a DNN classifier. After demonstrat-
ing the fabrication of pressure sensor e-mat, a DNN algorithm
with three alternate architectures are designed to process the
pressure image stream. SPeM collects two datasets, including
four sleeping postures and five dynamic activities, which
are used to train different DNN models, respectively. After
the evaluation and discussion of the experiment results, our
SPeM system is considered as a high-accuracy, low-cost, and
convenient human monitoring application. The contributions
of this paper are:

1) A Velostat sensor array-based SPeM is designed and
established to generate human pressure patterns. SPeM is
low in price, foldable, portable, flexible, and low weight,
with a length of 2.030 meters, a width of 1.525 meters,
a height of fewer than 0.001 meters, total weight is 2749
grams, and its total price is 220 USD. The resolution of
67.3×52.3mm2/pixel can ensure the generated pressure
images are easily processed and have potential visualiza-
tion applications.

2) Considering healthcare, sport, gaming, early childhood
education, entertainment, and other application scenarios,
SPeM is used to monitor human postures and dynamic
activities at home scenarios. We collected human pressure
pattern datasets in two different scenarios, including four
sleeping postures and five dynamic activities, including
a total of 14,000 image stream samples, each containing
ten image frames.

3) DNN algorithm is used to recognize static and dynamic
pressure images, achieving high accuracies on sleeping
posture and dynamic activity recognition. Experiment
results demonstrate that the proposed SPeM can effec-
tively capture the pressure modalities generated by human
activities, which provides a high-precision, complete, and
visualized paradigm and instance.

The presentation of the work is as follows. In Section II,
the methodology of this work is described. The experimental
setups and results are demonstrated in Section III. Some
discussions of comparison with other methods are given in
Section IV prior to the conclusion and future work drawn in
Section V.

II. METHODOLOGIES

This section presents the proposed SPeM system, including
the fabrication of the Velostat pressure sensor array-based e-
mat and the design of the DNN algorithm. The schematic
diagram of the proposed SPeM system design is presented
in Fig. 2.

Fig. 2. The design diagram of the proposed SPeM system. The human
pressure modality is represented as pressure distributions on the pressure
e-mat. The signal processing subsystem generates a voltage distribution by
scanning the interface of the pressure e-mat. The backend operator generates
pressure images and utilizes a classifier for classification.

A. Smart Pressure e-Mat System Design

The proposed SPeM system comprises a pressure e-mat
for sensing, a signal processing subsystem for calibration,
scanning, and sampling, and a backend for visualization and
classification. The signal processing subsystem consists of a
printed circuit board (PCB) integrated with analog multiplex-
ers, shift registers, and operational amplifiers, and embedded
with an Arduino Nano as the central signal processing unit.
To generate pressure images in real-time for visualization and
classification, a Processing program is run by the backend op-
erator, which utilizes the voltage distribution produced by the
signal processing subsystem. The human body exerts varying
pressure on the pressure e-mat depending on different tasks,
resulting in distinct resistance distributions. Arduino controls
analog multiplexers and shift registers to scan the pressure
mat line by line and obtain the corresponding analog voltage
distribution. Therefore, the quality of the pressure image relies
on the ability of the pressure cushion to completely, accurately,
and reliably receive the human body pressure distribution.
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Fig. 3. Schematic diagram of the e-mat. (a) Structure, size, and sensing area.
(b) Size and spacing of sensor elements.

B. Fabrication of SPeM

For the Velostat pressure sensor array, the pressure distri-
bution represented by the pressure image is only related to
the Velostat resistance at the intersections of the row and
column of conductive lines, i.e., the pressure sensor elements,
and the pressure distribution between elements is not sampled.
Separated sensor elements, i.e., using cut Velostat instead of a
whole piece of Velostat, is a viable approach to avoid wasting
material in inactive areas, as shown in Fig. 3. Separated sensor
elements have three advantages: saving material, avoiding
stray current flowing through the Velostat resistance material
to adjacent elements, and avoiding the deformation caused by
human body pressure to affect adjacent elements through the
material. The design approach of separated Velostat sensor
elements can reduce the use of Velostat material by 64%.
Meanwhile, separated sensor elements need to be distinguished
from independent sensor elements. The independent sensor
element is that each sensor element does not share the input
and output circuits with other elements, while each row and
each column of separated sensor elements share the input
and output circuits, respectively. Therefore, compared with
independent sensor elements, separated sensor elements have
a minimal number of input and output ports, resulting in a
simpler signal processing subsystem, but there will inevitably
be crosstalk. Independent sensor elements are more suitable
for a small number of elements requirement, while separated
sensor elements are required in large sensor arrays.

Fig. 3a shows the general structure and size of e-mat, which
consists of five layers, and two adhesive layers to fix the
upper and lower protective layers with the middle conductive
layer, respectively. The protective layers are polyester due
to their cheap, wrinkle-resistant, durable, and soft properties.
The adhesive layers are acrylic, which is not only soft but
also firm and efficient for bonding multiple objects together,
such as protective layers, conductive threads, and Velostat. The

(a) (b)
Fig. 4. Actual image of the e-mat. (a) The e-mat is placed on a Queen size
mattress. (b) The e-mat is folded and placed on a digital weight scale, and
the total weight is 2749 grams.

conductive threads are stainless steel fiber, which is famous for
its role in conductive fabrics, and we have taken a fancy to its
softness. Therefore, the soft property of the selected material
is the core consideration, leading to the suitability of the
fabricated e-mat for human-related applications. Unlike other
Velostat-based pressure sensor arrays, the distances between
sensor elements in the vertical and horizontal directions of
the e-mat are not equidistant, as shown in Fig. 3b. In order
to conform to the length and width of the human body when
lying on the bed, the size of e-mat is set to be equal to the
Queen size, and the actual sensing area is slightly smaller than
the bed sheet. Fig. 4a shows the Smart Bed Sheet placed on
a Queen size mattress for collecting subject sleeping posture
data. The fabricated Smart Bed Sheet is flexible, soft, and
portable, and Fig. 4b shows its foldability and low weight.
We summarize the parameters of the proposed SPeM in Table
II.

TABLE II
PARAMETERS OF SPEM.

Item Description

Length × Width (m × m) 2.030 × 1.525
Resolution (mm2/pixel) 67.3 × 52.3
Weight (gram) 2749
Price (USD) 220
Image sample rate (Hz) 2
Image stream sample rate (Hz) 0.2
Image stream resolution (pixel) 27 × 27 × 1 × 10

C. Deep Neural Network for Image Stream

In this paper, we advocate the use of an end-to-end DNN
as a pressure image stream classifier to achieve both human
sleeping posture and dynamic activity recognition. CNN is
one of the leading solutions for image classification problems.
However, how to handle the temporal relationship between
images after 2D convolution is still an open problem. In
pressure image classification tasks, the sample is 3D tensors
I ∈ Rn×m×d and the label is Y ∈ N, where n is the image
length, m is the width, and d is the channel. R and N are real
number set and natural number set, respectively. The length n,
width m, and channel d of the pressure image are determined
by the actual manufacture of the pressure sensor e-mat. While
the classification tasks proposed in this paper are based on an
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Fig. 5. Fusion of RESNET-PIs for images with temporal relationship. The DNN with three alternate architecture can be considered as 3D CNN, CRNN, and
CDNN when concatenated with Conv, LSTM, or Dense, respectively.

image stream, also known as video, the sample is a 4D tensor
V ∈ Rn×m×d×j , where j is a customized number of images in
the stream, depending on the application requirements. In this
paper, the sample dimensions are 27×27×1×10. Considering
the nonlinear resistance characteristics of the Velostat material,
the image stream generated by SPeM depends not only on the
pressure distribution of human activity but also on the electri-
cal sensitivity of the Velostat based on the resulting pressure
distribution. Specifically, the resistance sensitivity is higher
when the activity generates greater pressure, and the pressure
is applied for a shorter time, and vice versa. Considering the
task of human sleep posture recognition with a large pressure
distribution area and a lengthy application time, even if it
is a static human activity, the stream still presents different
pressure images due to the nonlinear resistance characteristics
of Velostat. In addition to the above two factors of activity and
Velostat nonlinear characteristics, possible secondary factors
include the subject’s personal habits, noise, etc.

Therefore, the critical thing is to find the temporal relation-
ship of j pressure images. Due to the excellent performance of
CNN in image processing, it is used as a feature extractor to
extract a high-level representation of human pressure patterns.
Subsequently, the temporal relationships between images in a
stream also need to be processed by neurons. Consequently,
after j CNNs are used to extract j image tensors I, a
final layer process the relationship between images in the
stream, as a DNN classifier of the proposed SPeM system.
Specifically, we consider [22] proposed CNN RESNET-PI
as the pressure image feature extractor of DNN. RESNET-
PI reduces the number of model parameters by removing
one residual block from ResNet-18 [46]. RESNET-PI, as a
lightweight CNN, not only reduces the computational com-
plexity but also avoids overfitting on pressure image data with
a small number of features. Therefore, the DNN algorithm
uses a temporal feature-level concatenation of RESNET-PIs,
using pending convolution (Conv), long short-term memory
(LSTM), or fully-connected (Dense) to process the temporal
relationships. Fig. 5 shows the proposed DNN with three
alternate architecture integrating RESNET-PIs.

The proposed DNN can adjust the number of sub-CNN
according to the number j of pressure images. Considering the
need of recognition speed for human monitoring applications,
the experiment in this paper considers a sample including
j = 10 pressure images, which results in a sampling time
of five seconds for each sample. Considering that sub-CNNs
are only used as feature extractors here, they can increase the
learning efficiency and reduce the computational complexity
by sharing weights. A Dropout layer is inserted into each
ResNet block to further enhance the generalization ability
of the proposed DNN. The entire process of generating the
pressure image stream dataset and training the DNN model
by the SPeM system is elaborated in Algorithm 1.

Algorithm 1 Smart Pressure e-Mat (SPeM) System
Input: Initial DNN model θ0, training epochs E, learning rate η,
loss function f , Adam optimizer.
Output: Trained DNN model θ∗

# Scanning e-Mat to generate pressure image stream
1: while data collection do
2: for stream = 1, . . . , j do
3: for row = 1, . . . , n do
4: for col = 1, . . . ,m do
5: Pressure image Istream

row,col ← 8-bit analog output
6: end for
7: end for
8: Generate pressure image Istream

9: Pause 0.5 seconds
10: end for
11: Concatenate I and generate pressure image stream V
12: Append dataset ξ with stream and label pair {V,Y}
13: end while

# Training DNN
1: for e = 1, . . . , E do
2: for batched pair {V,Y} do
3: Train DNN model θe ← Adam(θe−1; {V,Y}, η, f)
4: end for
5: end for
6: Output the trained DNN model θ∗ ← θE
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III. EXPERIMENT AND RESULTS

This section is organized as follows to illustrate the experi-
ments and results of this paper. After introducing the non-ideal
properties of Velostat and subject information, we conduct two
experiments, including human sleeping posture and activity
recognition, respectively. A sports game is introduced as an
indicator for our activity recognition. The experiment also
compares the performances and results of different DNN
architectures.

A. Velostat Non-ideal Properties

Piezoresistive resistors like the Velostat have some noto-
rious non-ideal properties, including reduced sensitivity due
to crosstalk, stray currents, electrical noise, and nonlinear
resistance characteristics. We seek to improve the accuracy
and robustness of SPeM by discussing and characterizing
these properties of Velostat and by featuring them in the
pressure image stream data. Due to the inevitable crosstalk,
the resulting noise is a challenge. Fig. 6a shows the voltage
distribution of different elements when they are unoccupied.
It can be seen that the voltage of different elements oscillates
between several units when unoccupied, which also causes
the element voltage to oscillate when monitoring human
activities. Fig. 6b shows the noise-induced voltage instability
in the loading and releasing states and the nonlinear resistance
characteristics. In which the loading and releasing states refer
to the state of continuous loading at 100 Newton pressure and
the state of after-stop loading, respectively. At the 10th second,
the Velostat is loading with a voltage rise, but the gradient
is decreasing. Although the voltage rise can converge to a
final steady-state value, for human monitoring applications, the
voltage and the generated pressure image constantly oscillate
and rise as the occupancy progresses. The same is true for the
releasing state. Therefore, we propose an image stream rather
than a single image as one sample in the dataset.

(a) (b)
Fig. 6. Velostat non-ideal properties. (a) Voltage distribution of five elements
when unoccupied. (b) Voltage response curves during loading and releasing
states.

B. Experimental Setup

The data collection is at a home scenario, as it can better
fit the proposed SPeM product functionality. The portable
pressure sensor e-mat that can be easily extended to multiple
uses, so it is placed on a mattress and a carpet for different
classification tasks. The pressure distribution on e-mat is
strongly related to the pressure distribution of the human

body, and a diverse dataset can effectively avoid overfitting
the neural network model. We recruit seven subjects, including
five males and two females, with varying ages, heights, and
weights for the feasibility testing of the SPeM system. Their
physical information is detailed and presented in Table III.

TABLE III
SUBJECTS’ PHYSICAL INFORMATION, INCLUDING AGE, HEIGHT, WEIGHT,

AND BMI.

Minimum Maximum Average Standard Deviation

Age (years) 21 28 23.20 2.86
Height (m) 1.67 1.83 1.75 0.07
Weight (kg) 64 78 71.00 6.78
BMI 19.41 25.47 23.29 2.37

Subjects under different instructions completed the datasets
of posture and activity collection. Ten pressure images are
used as a sample of the dataset and have a sampling period of
two images per second. The collection time for each sample
is approximately five seconds. Appropriate sampling time can
not only obtain a higher number of samples but also ensure that
each sample contains a sufficient amount of pressure image
information to be learned by DNN models. Between samples,
subjects moved and rotated consciously to obtain a diverse
dataset. Human sleeping postures and dynamic activities are
collected in two datasets to validate the application of the
proposed SPeM in human monitoring. Each dataset is divided
into a training set, test set, and validation set with a ratio
of 0.7, 0.15, and 0.15, respectively. The optimizer is Adam,
with the learning rate is initially 10−3, and the learning rate
decreases by 0.1 every 100 epochs of iterations. Since these
are classification tasks, the last layer is Softmax, and the loss
is estimated by cross-entropy. The batch size is set to 32 and
iterated 200 epochs to obtain the preliminary fitting results
of the DNN model. The DNN architectures are implemented
on TensorFlow and then trained on an Intel(R) Core(TM) i9-
10850K CPU @ 3.60GHz, and an Nvidia GeForce RTX(TM)
3080 GPU.

C. Sleeping Posture Recognition

SPeM is placed on a queen-size mattress for its first home
scenario application, which is the recognition of sleeping
postures. This is crucial for high-precision posture recognition
that can effectively prevent diseases such as bedsores. As
shown in Fig. 4a, SPeM is designed to completely cover the
mattress. Subjects are instructed to simulate four common
sleeping postures on SPeM, as shown in Fig. 7. The subject’s
body is oriented in the same direction as the mattress, and we
allow some degree of movement and rotation of their arms,
legs, torso, and head. The orientation of the chest is used
to differentiate between the four postures, while allowing for
some movement and rotation of the subject on the SPeM to
diversify the dataset.

Fig. 8 shows some sampled pressure images of four human
sleeping postures, from which a clear outline of the human
body and pressure distribution can be seen. In addition to the
changes caused by human pressure, there is also some noise
distributed around the image edges. Therefore, in the process
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Fig. 7. Illustration of four common sleeping postures, including (a) supine,
(b) prone, (c) left lateral, and (d) right lateral. Bokeh body parts are included
in the illustration to represent possible rotation and displacement of the arms,
legs, torso, and head during sleep.

Fig. 8. Pressure images of four human sleeping postures.

of pressure mode recognition, the classifier should focus more
on the center of the pressure image rather than the edge area,
and the neural network can undoubtedly achieve this purpose.
The classification results of various DNN models are shown
in Table IV, including CRNN, 3DCNN, and CDNN. It can be
seen that these three DNN models all have fairly high accuracy
and similar training time. Fig. 10a shows the exampled CRNN
confusion matrix of the sleeping posture task.

D. Dynamic Activity Recognition

To provide a more accurate and vivid description of human
activities, we use the successful commercial game product,
Nintendo Switch Ring Fit Adventure (RFA) [47], as an in-
dicator in this study. SPeM is considered as a significant
complementary, prior, and auxiliary sensor to the RFA gaming
platform to enhance its performance. We only use the activity
definitions, instructions, and scores of RFA for dynamic activ-
ity recognition experiments. The Nintendo Switch console is
equipped with various sensors, including an inertial measure-
ment unit (IMU), motion sensing infrared camera, brightness
sensors, etc., and can be equipped with a variety of physical
games. RFA is an exergame that may help overcome move-
ment disorders and provide therapeutic applications for bal-
ance restoration and functional mobility, meeting the demand

TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT DNNS ON THE HUMAN

SLEEPING POSTURE AND DYNAMIC ACTIVITY RECOGNITION DATASETS.

Task Sleeping Posture Dynamic Activity

Algorithm CRNN 3DCNN CDNN CRNN 3DCNN CDNN
Accuracy 0.988 0.985 0.993 1.0 0.998 0.998
Time (s) 2461 2120 2148 5782 4929 4990

for home exercise [48]–[50]. By combining two independent
Joy-Con controllers equipped with firmware Ring-Con, various
fitness movements can be recognized and detected. However,
RFA still has a high error rate when differentiating fitness
movements, as only the leg side of the sensor set and the Ring-
Con sensor set are used to identify all body movements. To
improve the efficiency and performance of RFA, we propose to
use a prior classifier. The contact sensor of the pressure system
can better capture the pressure distribution of the human body
and perform high-precision activity recognition.

(a) (b)

(c) (d)
Fig. 9. Schematic diagram of four dynamic activity, including (a) Hip Lift,
(b) Leg Raise, (c) Seated Forward Press, and (d) Revolved Crescent Lunge.
Running is also one of five dynamic activities that are not shown here.

The design of dynamic tasks is a delicate process, as it
requires a link to home sports activities while also requir-
ing explicit activity instructions and specifications. Therefore,
we borrowed activity directives and specifications from the
successful case of RFA as the dynamic activity settings
for our experiments. The visual cues and scoring system
in RFA can effectively reduce the subjects’ comprehension
errors regarding the experimental instructions. Fig. 9 shows
four clearly indicated activities without Running in the RFA,
and the RFA can determine whether the subject’s activity is
normative through a scoring system. RFA includes dozens of
activities that work muscles in different parts of the body, such
as the chest, waist, and legs. For the preliminary validation
of SPeM, we selected five activities, including Running, Hip
Lift, Leg Raise, Seated Forward Press, and Revolved Crescent
Lunge. Different activities generate weight in different areas
of the body. For example, Hip Lift concentrates pressure on
the shoulders and both feet. Similar to the data collection
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process for sleeping posture recognition, we asked subjects
to collect pressure images with different displacements and
rotations throughout SPeM.

The classification results of dynamic activity recognition are
shown in Table IV and Fig. 10b. CRNN achieves the highest
classification accuracy of 1.0, which is remarkable for its
ability to capture different pressure distributions generated by
different activities accurately. According to experiment results,
it can be seen that the proposed DNN algorithm achieves fairly
high accuracy in both sleeping posture and dynamic activity
recognition. Since we tested the model on an unseen test set, it
is not difficult to see that in addition to the high generalization
ability of the fitted model, the generated pressure dataset is
also independent and identically distributed. According to the
experiment results, it can be proved that the proposed SPeM
system can produce high-reliability pressure images, precision
classification prediction, and generalization ability.

(a) (b)
Fig. 10. Confusion matrix under the predictions of CRNN for (a) four sleeping
postures and (b) five activities recognition.

IV. DISCUSSION

The accuracy of the SPeM system will be dependent
on the experimental setup and the resulting data collection
process. Two significant factors that affect the classification
accuracy are the sampling rate and period. The sampling
rate is impacted by the non-linear resistance characteristics
of Velostat. In our experiments, we have set the sampling
rate to two hertz to account for the application and release
of Velostat resistance and the duration of a single activity
in the RFA. However, we have observed that the sampling
frequency may be a little high, resulting in minor variations in
adjacent images and wasting computational resources, as well
as electrical noise caused by cluttered currents in the sensor
array. It is essential to note that the sampling period heavily
depends on the application under consideration. While the
experiments in this paper aim to control experimental variables
and observe the differences between static and highly dynamic
applications, a faster sampling period may not be appropriate
for other applications, such as sleep recognition, where it could
result in the unnecessary waste of computational resources.
Therefore, it is necessary to adjust the system parameters
to suit different human monitoring applications. A tailored
application-following system parameter setting can lead to
better performance and accurate classification results in diverse
scenarios.

In this paper, we use a DNN algorithm with three archi-
tectures to perform the classification task of dynamic pressure
image streams. However, based on our observations of related
work (Table I), we have found that most human monitoring
applications for static activities, such as sitting, sleeping, and
long-term immobility, only use a single image as the data
sample. Therefore, we conservatively tested RESNET-PI and
other individual CNNs on the sleeping posture dataset, achiev-
ing a classification accuracy of approximately 0.98. Although
single CNNs are a feasible method in ideal conditions, in real-
world application scenarios, the proposed image stream-based
classification method in the SPeM system is more robust.
Firstly, in real-world scenarios, the pressure generated by
human sleep is affected by various external factors, such as
blankets, pillows, mattresses, and even dolls. Secondly, the
pressure image generated by the Velostat-based pressure sen-
sor array is time-varying due to electrical noise and crosstalk.
Thirdly, the resistance of Velostat also changes over time due
to its nonlinear resistance characteristics, as shown in Fig. 6b.
For long-term static postures, we can adaptively adjust the
sampling rate to reduce system power and storage overheads.
Therefore, the introduction of the time dimension can also
increase the robustness of human monitoring applications,
and we advocate for its use in static-like human monitoring
applications.

V. CONCLUSION

In this paper, we propose a SPeM system for large-scale
collection and demonstration of human pressure distribution
and develop two potential applications of human sleeping
posture and dynamic activity recognition. From the analysis
of the pressure image stream, DNN models are used to
train, classify, and predict the two datasets. Experiment results
demonstrate that the proposed SPeM system can excellently
achieve high-precision classification tasks. This paper high-
lights the portability, flexibility, and low price of SPeM and
demonstrates its preliminary applications in human health care,
entertainment, monitoring, etc.

Future work lies in the fusion of the proposed SPeM with
other sensors, such as wearable sensors. Any single sensor has
its limited capabilities, and pressure sensors in the dynamic
activity recognition task cannot detect the motion of the human
head, trunk, or hand. Therefore, the combination of SPeM,
wearable sensors, or other kinds of sensors can monitor the
human body in multiple modalities. Furthermore, although
SPeM shows its advantages in visualization compared to indi-
vidual pressure sensor modes, the pressure image needs to be
optimized to be more clearly visible, with higher contrast and
high resolution. Due to crosstalk and noise, most piezoresistive
pressure sensors have similar defects, so it is necessary to
further improve the image quality when the visualized pressure
image stream is used in HCI applications. Fabricating pressure
sensor array e-mat and related applications presents difficul-
ties, especially in large-size and high-resolution applications.
However, the increase in size and resolution is limited for
recognition accuracy gains due to marginal effects. Currently,
SPeM is able to generate pressure images with a resolution
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of 27 × 27, which is far from adequate for visualization
applications in human activity monitoring. In addition to
filtering and contrast enhancement, super-resolution of current
pressure images is also a research scheme.
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