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Passive Radio Frequency Sensor Research

e Research leading up to this proposed system
e Utility of calculating RSSI from I/Q data

Long-term DDDAS

e Comparison with Instantaneous DDDAS

e Related Approaches
PRF-based Indoor Positioning System (PIPS) in DDDAS

* Objectives and Approach

OUtI i ne e Evaluation of PIPS

Experiment Setup and Results

* Performance of tested systems
e Comparison with related works

Future Work

e Overview of progress with the conclusion
e Any Questions from the audience
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I 2 ad I O mml Passive Radio Frequency Research

eHuman Heterogeneous Passive RF Fusion
(Vakil et al., 2022)

e|dentification and Activity Recognition (Yuan
et al., 2022)

eVisualization of PRF Data (Vakil et al., 2021)

eHuman Indoor Positioning (Mu et al., 2021)
eSynthesis Human Signatures (Liu et al., 2021)
eHuman Occupancy Detection (Liu et al., 2020)
eSensor Fusion for Passive RF (Vakil et al., 2020)

=l Software Defined Radio

e Utilizing passive in-phase quadrature (1/Q)
data

eNo transmitters, ID tags, only the received
RSSI data is necessary.

e|dentification and tracking of human and Yuan et al. 2022
vehicle targets ’

Frequency




Theory
Measur t aware: Assi n, uncertainty quantification
Tractable non-Gaussian Reduced order modeling
representations in dynamic data | with ensemble filtering
driven coherent fluid mapping

Dynamic data-driven adaptive Information-theoretic

observations in data assimilation | particle filtering

for multi-scale systems

Dynamic data-driven Polynomial Chaos and GMM

uncertainty quantification via uncertainty quantification

generalized polynomial Chaos

Signals aware: Processes monitoring

Towards learning Declarative data estimation

Spatio-temporal data stream and learning

relationships for failure

detection in avionics

Markov modeling of time series | Reduced-order Markov

data via spectral analysis modeling w maximum
entropy partitioning

Dynamic space-time model for Particle filters with Dirichlet

syndromic surveillance w PF and  processes

and Dirichlet Proces

Structures aware: Health modeling

A computational Steeriig Variational multiscale fluid

framework for large-scale structure interaction (FSI)

composite structures

Intelligent self-healing composite | Modified beam theory

structure using predictive

self-healing

Simulation

Atmospheric plumes

Lorenz 1963 weather data

Satellite tracking

Airplane sensor data

Time-series combustion
modeling

Biohealth outbreak

Isogeometirc Analysis (IGA)
approach lie finite-element
modeling

Structures crack and
delanation healing

Blasch et al., 2018

e Biosensing

Data

UAV tracking plume
detection

Weather augmented
nonlinear flight

Ionosphere-thermosphere
models

Aircraft weight, airflow
measurements

Gas, pressure, temperature

Indiana public health
emergency surveillance sys

Structures composite
element relation network
with ultrasonic sensor
Double-cantilever beam
fracture and healing test

Application

Unmanned aerial systems
Sensor selection in
dynamic flight

Orbital awareness

Avionics sensor failure

Combustion engine
diagnostics

Health protection

Compsitie wing control
for aerodynamic flight

Structural self-healing

e Exploitation of efficient data collection, full
scale modeling, management and data
mining from available sources.

e Weather forecasting (strongly dynamic data)
e Wildfire monitoring




Instantaneous
DDDAS vs
Long-Term

DDDAS
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Instantaneous

e Weather forecasting

e VVolcanic ash, atmospheric contaminants
e Wildfires detection

e Autonomous driving

e Fly-by-feel aerospace vehicle

e Biohealth outbreak

Long-Term DDDAS

¢ CO2 concentration
¢ Sea level
e Earth moon distance

¢ |dentification of biomarkers in DNA
methylation

e Multimedia content analysis
¢ Image processing
e Our proposed positioning system




Long-Term
DDDAS

Example

DDDAS Framework Model

e Objective: Go to McDonald's to get some
sweets or treats like ice cream, preferably
Oreo McFlurry, but others are acceptable.

e How does the framework suggest we move
forward to achieve the objective?

DDDAS Framework Model

e |nitial Conditions: Capable of traveling to the
nearest McDonald’s; Objective: Oreo
McFlurry or an acceptable substitute.

e Boundary Conditions: At least some sweets;
normal/acceptable prices, efficient time
expenditure.

e Inputs: Drive to the nearest McDonald's and
order an Oreo McFlurry.

e Parameters: Driving time; price; flavor.
e States: Unknown




Long-Term

DDDAS
Example
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DDDAS Framework Model

e The DDDAS framework aims to make optimal
decision in the task of buying Oreo McFlurry.

e Ensuring that the purchasing process is within
acceptable parameters to meet the objective.

DDDAS Framework Model

e Are other products acceptable without Oreo
McFlurry? Or should | go to another McDonald's?
Maybe, it depends on how far the other
McDonald's is (dynamic input). If accepted,
then we drive to another McDonald's
(reconfiguration).

e |s it acceptable to wait for it? Considering the
time to wait (dynamic input). To accept or not
to accept (reconfiguration).

e What if | buy all McDonald's sweets or treats?
Do not accept, it is expensive and unnecessary
waste (boundary).




Initial Parameters
B, A, and Rs

PRF-based three-dimensional (3D) Indoor
Positioning System (PIPS) in DDDAS
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Band Selection

Sensor Reconfiguration

PIPS

e Indoor positioning under the framework of DDDAS.

* Dynamically conduct sensor reconfiguration based on the data collected in the scenario.

Frequency Band DDDAS

¢ Primarily handled with frequency band where sampling is performed, a major factor that affects

accuracy, sampling speed, and cost.

e Sensitive frequency bands selected are dynamic because the most sensitive frequency bands
change according to scenario, including factors such as house structure, time, house location, etc
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Impact of Frequency Bands

eFrequency band € {91.2, 93.6, 96.0, 98.4, 100.8}
*MHz; Step size = 2.4 MHz
eSampling rate = 2.4 MHz

eHaving already processed this information allows for the continuity of the frequency
to be maintained, without loss of generality with the selected frequency bands.

eCollection time for each data sample is reduced to 1 second.




TEN MOST IMPACT FREQUENCIES ARE FOUND FROM SHAP, PCA, AND
STATISTICAL VARIANCE.

Frequency | Bsyap Bpca By PCA Explained
Ranking (MHz) (MHz) (MHz) Variance (%)
Ist 100.8 100.8 100.8 67.46

2nd 91.2 105.6 98.4 12.64

3rd 98.4 180.0 91.2 1.94

4th 105.6 103.2 103.2 1.94

5th 74.4 31.2 96.0 1.35

6th 88.8 636.0 576.0 1.13

7th 115.2 756.0 88.8 0.97

8th 110.4 31.2 105.6 0.74

9th 542.4 24.0 74.4 0.62

= 10th 84.0 756.0 84.0 0.51
PIPS In

Yuan et al., 2022

e —
F ram eWO r k eFrequency band € {91.2, 93.6, 96.0, 98.4, 100.8} MHz; Step size = 2.4 MHz;
Sampling rate = 2.4 MHz

*Optimal solution that relies on SHAP by implementing pre-sampling in the target
scenario then analyzing the collected samples to find the optimal Frequency Band,
Step Size, and Sampling Rate.

*98% sampling time reduced! 5 frequencies (under DDDAS) vs 400 frequencies (full
band). Without DDDAS Framework to find optimal frequency, data collection over
the full frequency band will require much longer period of data collection.

*Sensor redeployment time is 300 s/m”3. This reduction allows for greater scaling
with new environments for the system, 100 sensors could reduce redeployment in
a warehouse the size of a football field down to 6 hours.

eHigh accuracy and reliability.
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*Red (0 M) and Blue (1 M) represented with respect to distance from the ground at 60
locations in the selected frequency bands in 3D Indoors Scenario.

*60x gridded positions total as coordinates setup in 3D space for data collection.

eScenario room has a length of 6.15m, width of 4.3m, and a height of 2.42m for the
preliminary verification of the PRF positioning.

Processing

eUsage of impactful frequency bands to obtain signals of opportunity (SoOP).
eGeneralized using Scikit-Learn and SHAP toolkit with TensorFlow Framework.
*PCA (10 components with highest significant variance).

*Prebuilt linear SVM classifier to classify at different positions.




Table 1. Single regressors to implement positioning tasks and serve as baselines for
PIPS.

Regression| RMSE (m)| R* [95% CE (m)|Time (s)
SVR 1.229 QLTTY 2.214 1,026
KNR 0.268  10.986 0.412 0.002
GPR 0.612  [0.967 1.248 1.508
DTR 0.603  ]0.930 L AEL 0.016
MLP 1.506  ]0.562 2.534 2.104

Evaluation Criteria

Experiment

Setup e Root Mean Square Error (RMSE)
e Coefficient of Determination R?
e 95 % Confidence Error (CE)

e Fitting Time

Comparison with Baseline

e RMSE
* 95 % CE




Table 1. Single regressors to implement positioning tasks and serve as baselines for
PIPS.

Regression| RMSE (m)| R* [95% CE (m)|Time (s)
SVR 1.229 QLTTY 2.214 1.026
KNR 0.268  ]0.986 0.412 0.002
GPR 0.612  10.967 1.248 1.508
DTH 0.603  ]0.930 Lk L1 0.016
MLP 1.506  |0.562 2.534 2.104

Table 4. Performance of ensemble learning models under the stacking strategy.

. Ensemble Strategy|Final Estimator|RMSE (m)| R* [95% CE (m)|Time (s)
Experiment Stacking SVR 0271 |0.988] 0463 | 97.281
KNR 0.259  10.990 0.446 92.678

Resu |ts GPR 2115 10.273| _ 3.924 | 97.241
DTR 0.327  10.984 0.086 93.218

MLP 0.263  (0.990 0.459 95.106

ABR 0.334 _10.984 0.258 97.657

GBR 0.258  10.990 0.317 94.338

HGBR 0.254  10.990 0.371 95.478

RFR 0.255  10.990 0.431 93.835

ETR 0.259  10.990 0.334 93.808

Comparison with Baseline (GBR)

e RMSE
* 95 % CE
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Conclusion
.

*Proposed PIPS 3D system does not require any transmitters, using PRF data (RSS calculated from I/q
Data) to determine positioning.

eTraditional positioning that uses RF is active and requires number of transmitters and has reduced
accuracy at greater sampling distances.

eDetroit Metropolitan area is located from ranges 88.1 to 107.9FM which coincides with frequency
bands impact.

eCurrent research is limited with frequency selection technology, choosing the 5 most sensitive
frequency bands from 400 available frequencies with the full frequency band under the DDDAS
framework.

Future Research Direction Towards Dimensionality Reduction

eWith dimensionality reductions, although similar in terms of results, have effects, such as with the
PCA reducing the complexity of the data it can’t reduce the sampling time needed.

eBenefits of dimensionality reduction lie in privacy considerations for users and visualization
applications. In 1oT applications, performing PCA locally can reduce dimensionality of data so that
user privacy can be protected after uploading to the cloud, into two- or three-dimensional format as
seen above.
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