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Abstract

Ensuring traffic safety and preventing accidents is a crit-
ical goal in daily driving, where the advancement of com-
puter vision technologies can be leveraged to achieve this
goal. In this paper, we present a multi-view, multi-scale
framework for naturalistic driving action recognition and
localization in untrimmed videos, namely M?>DAR, with
a particular focus on detecting distracted driving behav-
iors. QOur system features a weight-sharing, multi-scale
Transformer-based action recognition network that learns
robust hierarchical representations. Furthermore, we pro-
pose a new election algorithm consisting of aggregation,
filtering, merging, and selection processes to refine the pre-
liminary results from the action recognition module across
multiple views. Extensive experiments conducted on the 7th
Al City Challenge Track 3 dataset demonstrate the effective-
ness of our approach, where we achieved an overlap score
of 0.5921 on the A2 test set. Our source code is available
at https://github.com/PurdueDigitalTwin/
M2DAR.

1. Introduction

Distracted driving poses a serious threat to road safety,
with approximately 8.6 fatalities occurring each day in the
US, a figure that is on the rise according to the National
Highway Traffic Safety Administration (NHTSA) [26]. The
danger is further amplified by the increased reliance of
drivers on automated driving systems, especially those clas-
sified as SAE Level 3 [23]. These systems enable drivers to
disengage from steering and pedal control, but they must
still remain vigilant and prepared to regain control of the
vehicle. However, drivers are prone to losing awareness of
their surroundings when not actively driving, and engaging
in distractions can significantly impair their ability to retake
control.

Computer vision (CV) is a crucial tool in detecting dis-
tracted driving on the road, but its effectiveness can be lim-
ited by factors such as inadequate or poor quality data. To
address these challenges, the Track 3 of Al City Challenge
2023 [18] has released a comprehensive dataset and orga-
nized a competition on naturalistic driving action recogni-
tion (DAR). The dataset features recordings of driver ac-
tions in real-world scenarios, captured from multiple cam-
era angles, including instances of drowsy or distracted driv-
ing [19]. By analyzing these rich driving data, we can gain
valuable insights into driver behavior, which can help in de-
veloping more effective driver monitoring to improve road
safety. The competition’s objective is not only to accu-
rately classify but also to localize action segments within
an untrimmed video sequence, a problem known as tempo-
ral action localization (TAL).

To tackle the challenges associated with DAR, we
present a multi-view, multi-scale framework utilizing Vi-
sion Transformers (ViT), namely M?DAR. The primary
contributions of this paper include:

e The introduction of a weight-sharing, multi-scale
Transformer-based action recognition network that
learns robust hierarchical representations across mul-
tiple views.

* A novel election algorithm consisting of four crucial
steps - aggregation, filtering, merging, and selection
- designed to refine the preliminary findings from the
action recognition network.

* The achievement of our proposed system, which se-
cured 5Sth place on the public leaderboard of the A2
test set in the Al City Challenge 2023 Track 3, high-
lights the effectiveness and efficacy of our approach in
accurately recognizing driver distractions.
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Figure 1. Schematic diagram of our M2DAR system. The system consists of two stages: the action recognition stage and the election stage.
In the action recognition stage, the system recognizes driver actions using a weight-sharing recognition network. In the election stage, the
system refines the preliminary results obtained from the action recognition stage to generate the final action time chunks.

2. Methodology

In this section, we introduce our M2DAR system, which
offers an efficient and effective solution for accurately de-
tecting and recognizing naturalistic driver actions. Our sys-
tem consists of two stages: the DAR stage and the election
stage, as illustrated in Figure 1.

In the DAR stage, we use a sliding window technique
with temporally overlapping frames to classify video clips
of a fixed length into different action categories. This allows
us to process long video sequences and identify the actions
being performed within them. Our approach is designed to
leverage both spatial and temporal information and effec-
tively capture the spatiotemporal characteristics of the ac-
tions.

In the Election stage, we refine the preliminary results
obtained from the action recognition module to arrive at
a final prediction. This stage is critical for improving the
performance of DAR, as it allows us to consolidate the in-
formation from different camera views and select the most
reliable action candidates.

2.1. Problem Definition

Our goal is to accurately determine the start and end
times and identify the specific actions performed by a driver
in each video, using input from multiple camera angles. We

represent the number of camera views as M, and a multi-
view video as v = (x1, ..., X¢, ..., X7 ), where x; denotes a
multi-view frame. Specifically, x; is defined as:

RCXHmXWm}Z:]-, (1)

Xt = {Xt,m €
where H,,, and W,,, denote the height and width of the input
image captured from view m, respectively, while C' repre-
sents the number of color channels.

Let y represent the ground-truth set of actions performed
by the driver in the video, and let C be the set of predefined
action categories. Each element ¢ in the ground-truth set
can be expressed as y; = (s;,€;,¢;), where s; indicates
the starting time, e; corresponds to the ending time, and
¢; € C is the associated activity label. Let § be the set of N
predictions, where N is the cardinality of C'. We evaluate
the performance of our system using the average activity
overlap score.

To compute this score, we need to find a bipartite match-
ing between the ground-truth set y and the predicted set ¥,
yielding a permutation of NV elements 0 € Gy with the

! Assuming that the driver performs each of the 16 different tasks once,
in random order, as stated in the challenge statement.
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highest overlap score:

N

0 = argmaX,ca Z 05(Yi, Yo(i))s 2)
i=1

where 0s(yi, Yo (i)) is the pair-wise overlap score between
the ground truth y; and a prediction with index o(i). A
match is counted if y; and ¥, ;) are of the same class (¢; =
Co(#)) and the start time 3, ;) and end time é,(;) are within
10 seconds before or after the ground-truth activity’s start
time s; and end time e;, respectively. The overlap score
between each matched pair of activities is calculated as the
ratio of their time intersection to their time union, as defined
below:

max(min(e;, €,(;)) — max(s;, 55(3;), 0)

os(¥i-Jo) = max(e;, €q(s)) — Min(si, 85())

3)

If a ground-truth activity has no match or a predicted ac-

tivity has no ground-truth match, an overlap score of 0 is

assigned. The final score is obtained by computing the av-

erage overlap score across all matched and unmatched ac-
tivities.

2.2. Driver Action Recognition Stage

Accurate recognition of distracted driving behaviors de-
mands a robust video classification backbone. While Trans-
formers were initially developed for natural language pro-
cessing tasks [28], recent progress has demonstrated their
versatility beyond language tasks. For instance, ViT [5]
have interpreted image patches as visual words, achieving
competitive performance with convolutional neural network
(CNN) counterparts [9, 1 0]. Transformers are exceptional at
modeling global information and long-range dependencies,
making them suitable for analyzing video data.

Multiscale Vision Transformers (MViT) have further ex-
tended the power of ViT by introducing a pooling atten-
tion mechanism that generates a feature hierarchy with
multiple stages, gradually reducing from high-resolution to
low-resolution. MViT has achieved state-of-the-art perfor-
mance in video tasks [6]. To leverage these advancements,
we have employed the Multiscale Vision Transformer v2
(MViTv2) [12] as the backbone model in our system for
DAR. To balance efficiency and performance, we have se-
lected MViTv2-B (B stands for Base) as the backbone
model.

The recognition module takes a fixed-length video clip
as input at a time. To train the backbone model, we use a
temporal data augmentation technique inspired by [12, 13].
Specifically, we extract video clips from the original video
data v and the corresponding variable-length annotation set
Y, and assign them with corresponding activity labels. We

create our training set by taking the union of all video clips
from different videos and annotation sets as follows:

Nvideo N
k k k k
Dirain = U {(Xsi’xsi+17 ""Xei)’ Ci fi=1> “)
k=1

where x¥ | x% | ... x% denote the frames in the video clip
and c¥ is the corresponding activity label from video v¥ and
Nyideo 18 the number of videos available for training. Dur-
ing this process, we discard empty segments (video clips
without any annotations) to remove noisy information and
ensure high-quality training data.

During training, we pass the data from the three camera
views through a weight-sharing recognition network. For
each video clip in the training set, we randomly sample a
S x T frame segment that contains S frames with a temporal
stride of 7, which forms a training batch. The sampling is
performed independently for each camera view to ensure di-
verse training examples. We employ standard cross-entropy
loss function to optimize the network parameters.

During inference, we adopt a sliding window approach
with overlapping frames to generate predictions for each
test video. Specifically, we use a window size of S x T,
which is the same as the input size of the action recogni-
tion backbone model, and slide the window across the en-
tire video with a temporal stride of S x 7/4. For each win-
dow, we feed the corresponding frames from all three cam-
era views through the weight-sharing recognition network
and obtain a probability matrix for the action categories. We
then average the scores across all frame positions of the en-
tire video to obtain a probability matrix that captures the
overall temporal dynamics of the video. Finally, we pass
the resulting probability matrix to the election module to
generate the final action time chunks.

2.3. Election Stage

To refine preliminary findings obtained from the action
recognition module, we propose a novel algorithm called
Election. The algorithm leverages a probability matrix
p € RTXICIXM a5 input, where T, |C|, and M represent
the video’s duration, the count of pre-defined action cate-
gories, and the number of camera views, respectively. The
proposed method has four steps.

Aggregation (AGG). In the first step, to capture infor-
mation from various camera views, we apply a convolution
operation to the input probability matrix using convolution
kernels. Specifically, the operation is defined as:

M
p:&,c = Z We,m * Pt,e,m (®))
m=1
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Figure 2. The figure visualizes how our proposed election algorithm consolidates preliminary findings from the action recognition module
within our M2DAR framework. The plot displays probability scores from the action recognition module of four action categories: (a)
adjust control panel, (b) singing or dancing with music, (c) hand on head, and (d) text (right). The blue, yellow, and green dotted lines
represent the outputs from the recognition module, with transparency indicating their respective weights in recognizing the action. The
red line shows the probability score after the aggregation step of the election algorithm. The black dashed lines represent the probability
thresholds, while the red regions between the black dashed line and the red line are the action candidates. The gold star indicates the

outcome of the selection step.

where p’ € RT*ICl is the aggregated probability scores. To
weight the information from each camera view m differ-
ently for each action category ¢, we define the convolution
kernels w € RI€I*M  The kernel weight w,. ,,, is specifically
set for each action category ¢ and camera view m to inte-
grate the complementary information from different camera
views while focusing on the one containing the most dis-
criminative information. This design is based on the obser-
vation that different perspectives have different effects on
various behavior recognition, and different behaviors have
different characteristics under different perspectives. For
example, the action talk to passenger at backseat may be
difficult to recognize from the dashboard view or the rear-
view view, but very clear from the right-side window view.
Therefore, the convolution operation aims to enhance the

quality of the probability scores by integrating the com-
plementary information from different camera views while
weighting the views based on their relevance for each spe-
cific action category.

Filtering (FLTR). In the second step, the system iden-
tifies initial action candidates by extracting continuous
frames with probability scores that exceed a predefined
threshold for each action category. These frames are con-
sidered as potential action segments that may contain the
target actions. The threshold is set empirically based on the
probability distribution on the validation data to ensure a
balance between recall and precision. Frames with proba-
bilities below this threshold are discarded as they are un-
likely to represent a valid action. The resulting clips are
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ID Description ‘ ID Description

0  Forward Driving | 8 Adjust control panel
1 Drinking 9 Pick up from floor (D)
2 Phone Call (R) 10 Pick up from floor (P)
3 Phone Call (L) | 11  Talk to pax at the right
4 Eating 12 Talk to pax at backseat
5 Text (R) 13 Yawning

6 Text (L) 14 Hand on head

7  Reaching behind | 15 Singing or dancing

Table 1. List of 16 driver actions defined in Track 3 of the Al City
Challenge 2023: L, R, D, and P represent Left, Right, Driver, and
Passenger, respectively.

considered as initial action candidates and are used as input
for the subsequent candidate merging step.

Merging (MRG). In the third step, we merge clips that
have a small temporal gap (e.g., less than 0.5 seconds) be-
tween them. This design is based on the observation that
some driver actions may have a significant pause during
their occurrence, which can result in two separate action
segments. By merging these clips, we aim to eliminate the
influence of those interruption to the final action localiza-
tion results. The merging process is performed by itera-
tively comparing the temporal distance between each pair
of adjacent action candidate clips, and merging them if the
distance is less than the predefined gap threshold. This pro-
cess is repeated until no further merging is possible.

Selection (SEL). After the merging step, we compute the
average score of all merged candidates for each action cat-
egory. If there are multiple candidates for an action cate-
gory, we choose the one with the highest average score as
the final action candidate. The algorithm outputs |C| final
action candidates, one for each action category. We round
the start and end times of the final action candidates to the
nearest second and output them as the system’s final predic-
tion. This process ensures that the final prediction is based
on a comprehensive evaluation of all the merged candidates
and their scores, resulting in a more accurate and reliable
prediction of the driver’s actions.

3. Experiments
3.1. Dataset Description

Track 3 of the AI City Challenge 2023 [18] involves the
analysis of synthetic naturalistic driver data captured from
three different camera views positioned inside the vehicle:
dashboard, right-side window, and rearview mirror, while
drivers simulate driving scenarios. In addition, the drivers

Step ‘ Overlap Score
SEL FLTR MRG AGG ‘
v X X X 0.4683
4 v X X 0.5347
4 4 v X 0.5565
v v v v 0.5921

Table 2. Ablation study comparing the effectiveness of individual
steps in the M?DAR system. SEL, FLTR, MRG, and AGG refer
to the selection step, filtering step, merging step, and aggregation
step, respectively. The scores shown are obtained by uploading the
inference results to the evaluation server.

have three different natural driving appearances, including
none, sunglasses, and hat.

The dataset consists of 34 hours of videos captured from
35 drivers performing 16 distinct driving tasks defined in
Tab. 1 [21]. Each video has a length of approximately 8
minutes, with a frame rate of 30 fps and a resolution of
1920 x 1080. The driver videos are divided into three sub-
sets: Al, A2, and B. The A1 dataset is used for training and
includes ground truth labels for start time, end time, and
the types of distracted behaviors. The remaining two sub-
sets, A2 and B, each containing videos from five drivers, are
used for testing.

3.2. Implementation

We implemented the proposed system using PySlow-
Fast [8], an open-source codebase for video understanding.
We set a consistent input size of 448 x 448 for all three cam-
era views, since their resolutions are identical. For train-
ing, we used all the data in the Al subset for leaderboard
submissions. We utilized a pretrained MViTv2-B model on
Kinetics-700 [11], with a frame length of S = 16 and a
sample rate of 7 = 4. We employed the AdamW [16] opti-
mizer with a weight decay of 0.0001, and a cosine learning
rate scheduler [15], with a base learning rate of 5 X 1076, a
warm-up period of 30 epochs, and a total of 200 epochs.
We conducted all training and inference processes on a
NVIDIA A100 GPU.

3.3. Main Results

Our proposed framework achieved an overlap score (re-
fer to Eq. (3)) of 0.5921 on the A2 test set. The proposed
Election algorithm consists of four crucial steps: Aggre-
gation (AGQG), Filtering (FLTR), Merging (MRG), and Se-
lection (SEL). To further validate the effectiveness of each
step, we conducted an ablation study, wherein we modified
one module at a time while maintaining the other modules
unchanged.

In the absence of the aggregation step, we employed the
baseline method, which directly averages the probability
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scores from the three camera views. If the filtering step
was omitted, a uniform threshold was applied to all action
categories to obtain action candidates. Without the merging
step, the process proceeded directly to the selection step.

The ablation study results are summarized in Tab. 2,
which presents the scores obtained after submitting the in-
ference results to the evaluation server. As demonstrated in
Tab. 2, incorporating all four proposed modules resulted in
the highest score.

3.4. Election Visualization

We present a visualization of how the proposed election
algorithm consolidates the preliminary findings from the ac-
tion recognition module in our M?DAR framework. The vi-
sualization is shown in Fig. 2, where the figures (from top to
bottom) represent the probability score signals from the ac-
tion recognition module on randomly selected videos from
the validation set of four action categories: adjust control
panel, singing or dancing with music, hand on head, and
text (right), respectively. The transparent blue, yellow, and
green dot lines depict the outputs from the action recogni-
tion module, which are displayed transparently according to
their weights in recognizing the particular action. The red
line shows the probability score after the aggregation step of
the election algorithm. The black dashed lines represent the
probability thresholds. The red regions between the black
dashed line and the red line are the action candidates, while
the dash-dot lines represent the ground truth start and end
times of the action. The gold star in the figure refers to the
outcome of the selection step.

This visualization confirms the impact of different cam-
era perspectives on recognizing different behaviors. For in-
stance, comparing the first and third rows, we observe that
the right-side window view plays a crucial role in recog-
nizing the adjust control panel action (first row), but can
introduce significant noise in recognizing the hand on head
action (third row), which is resolved by the aggregation and
filtering steps. Additionally, the second row of the singing
or dancing with music action demonstrates a pause that af-
fects the recognition, which is addressed by the merging
step of the election algorithm. Finally, the last row of the
Text (Right) action highlights how the selection step evalu-
ates all merged candidates and their scores to ensure a com-
prehensive final prediction.

This visualization illustrates how our proposed algorithm
effectively improves the accuracy of action recognition in
multi-view videos by leveraging the complementary infor-
mation from different camera views and selecting the most
reliable action candidates. The integration of convolution
kernels tailored for specific action categories and the merg-
ing of overlapping candidates overcomes the limitations of
individual camera views and effectively captures the tem-
poral characteristics of the actions, resulting in improved

action recognition and localization performance.

4. Related Work

Driver Action Recognition. DAR has received signifi-
cant attention from researchers due to its potential to ef-
fectively monitor driver distraction and evaluate risky driv-
ing behaviors, thereby reducing the risk and severity of
traffic accidents [1, 13, 17,20, 27,29-31]. In the 6th Al
City Challenge [19], Stargazer utilized Transformer to ex-
ploit rich temporal features about human behavioral infor-
mation with a simple action temporal localization frame-
work [13], and PAND [31] proposed a strategy that uses a
multi-branch network and a post-processing method for se-
lecting and correcting temporal ranges. Additionally, the
heterogeneity of driver behavior is also a major challenge
for the generalization ability of the task [30]. ViT-DD pro-
posed a semi-supervised framework to make use of driver
emotion as an additional clue in recognizing driver behav-
iors [17]. Our solution for the AI City Challenge utilizes a
weight-sharing approach to effectively leverage contextual
information across different views, leading to better perfor-
mance in multi-view scenarios.

Temporal Action Localization. TAL is a challenging
task that involves accurately classifying and localizing spe-
cific activities within an untrimmed video sequence. There
are two main categories of methodologies used to address
this task: bi-stage methods [3, 4, 25] and uni-stage meth-
ods [2,14,24]. Bi-stage methods are similar to two-stage ob-
ject detection approaches [3,22], where frame or segment-
level classification is performed initially, followed by a
post-processing stage to consolidate the preliminary find-
ings into a final prediction output. In contrast, uni-stage
methods integrate both the temporal localization and activ-
ity categorization aspects into a single process, but the re-
sulting complexity can lead to increased training and infer-
ence times, difficulty in scaling to handle large-scale video
datasets, and meticulous fine-tuning of hyperparameters for
optimal performance [7]. Our solution for the Al City Chal-
lenge adopts a bi-stage method by dividing the multi-view
video into clips and processing them using Transformer
with weight-sharing, achieving high accuracy while also
reducing complexity and enabling efficient processing of
large-scale video datasets.

5. Conclusion

In this paper, we have presented a multi-view multi-
scale framework for DAR and localization in untrimmed
videos, which addresses the challenges of detecting dis-
tracted driving behaviors in a naturalistic setting. The pro-
posed M?DAR framework employs a weight-sharing recog-
nition network and an election module consisting of four
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steps: aggregation, filtering, merging, and selection. Our
system has achieved an overlap score of 0.5921 on the A2
test set of the Al City Challenge 2023 Track 3. Our pro-
posed framework has the potential to aid in the development
of more effective driver monitoring systems and improve
road safety.
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