

OCT 27-30, 2025, Houston, USA

Local-Cloud Inference Offloading for LLMs in Multi-Modal, Multi-Task, Multi-Dialogue Settings

Liangqi Yuan¹, Dong-Jun Han², Shiqiang Wang³, and Christopher G. Brinton¹

¹ Purdue University, ² Yonsei University, ³ IBM T. J. Watson Research Center

Local LLM vs. Cloud LLM

- ✓ Lightweight local LLM can process simple tasks efficiently with low latency and cost.
- X Lightweight local LLM struggle to handle complex or multi-modal tasks.
- ✓ Large-scale cloud LLM can manage complex reasoning and multi-modal data.
- X Large-scale cloud LLM suffer from high inference latency and usage costs.

Objective: Develop a system that **combines the strengths of both approaches** — achieving high response quality from cloud LLMs while maintaining low latency and usage cost through local inference.

Simple Tasks

Complex Tasks

Distributed Inference

Goal: Perform inference using most suitable models, on local device or potentially offloading to the cloud

Advantages: Performance-resource trade-offs, capability to address complex tasks, etc.

Apple Intelligence

Distributed Multi-Modal Inference

Goal: Perform inference using most suitable models and modalities, on local device or potentially offloading to the cloud

Advantages: Performance-resource trade-offs, capability to address complex tasks, etc.

Challenges: Lack of common frameworks and datasets, difficulty in decision-making, etc.

Existing works only consider single-modality and single-round scenarios

Front Camera

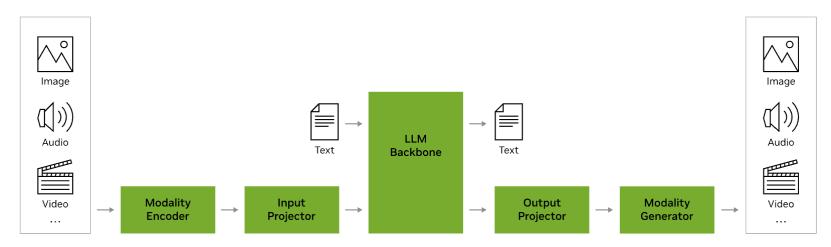
Rear Camera

Screenshot

Apple iPhone 16 Pro Max

Multi-Modal LLMs over Networks

- Multimodal LLMs have been widely deployed on edge devices via network access, such as the ChatGPT application on smartphones, direct web access, or API calls.
- A typical scenario is that users manually select the service and the relevant data, for example, using natural language to query objects within an image.



Our Focus

Goal: To optimize trade-offs among

response quality, latency, usage cost

in local-cloud LLM collaborative inference across

multi-modal, multi-task, multi-dialogue scenarios

under resource constraints

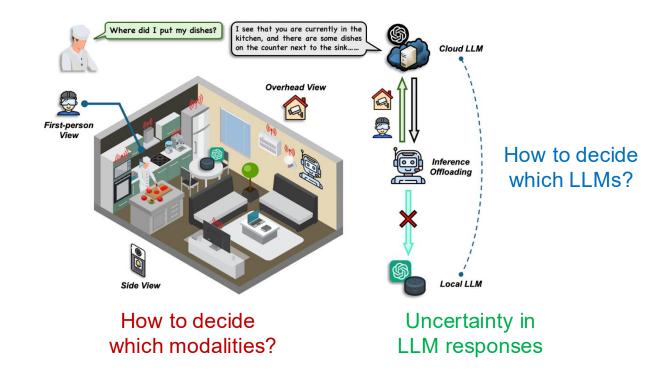
- Lightweight local LLM can process simple tasks at high speed.
- Large-scale cloud LLM can handle complex tasks and multi-modal data sources.



Challenges

New challenges arise!

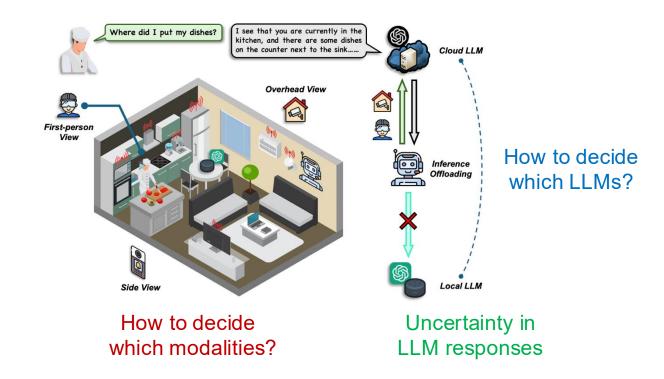
- Local LLM vs. Cloud LLM: Difficult to determine inference locations due to trade-offs among response quality, latency, cost, and resource constraints.
- Multi-Modal Data for Multi-Task in Multi-Dialogues: Challenging to identify the most informative and relevant multi-modal data sources.
- Inherent Uncertainty in LLM Inference: LLMgenerated responses are uncertain (e.g., hallucination), which makes offline training of other models difficult.



Our Solution

TMO: Multi-Modal, Multi-Task, Multi-Dialogue Inference Offloading

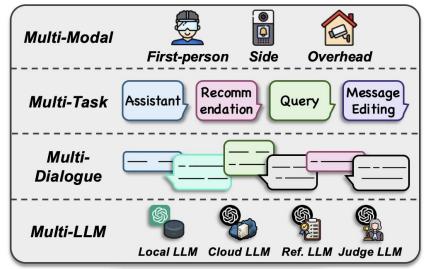
- Resource-Constrained RL: Maximize cumulative reward across multi-dialogue interactions by selecting the optimal LLMs and modalities for inference.
- Handle two types of uncertainty in LLM responses:
 - Non-Deterministic Evaluation (NDE):
 Identical state-action pairs may yield different response quality scores.
 - Out-Of-Distribution (OOD): Estimating response quality is challenging for unseen state-action pairs.



Use Case

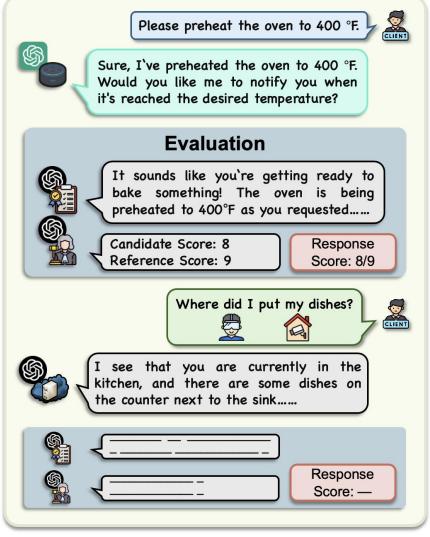
Kitchen Assistant with LLMs:

The scenario simulates 2-5 dialogues between users and LLMs across different kitchen activities.



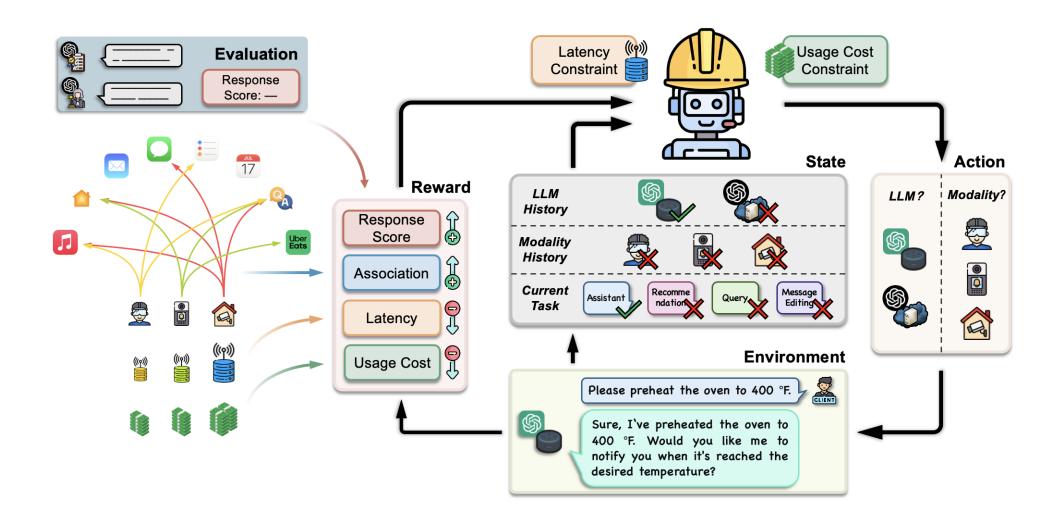
Scenario based on ActionSense, involving 20 kitchen activities

ActionSense, NeurIPS 2022



Response scores evaluated within our M4A1 dataset using LLM-as-Judge

Resource-Constrained RL



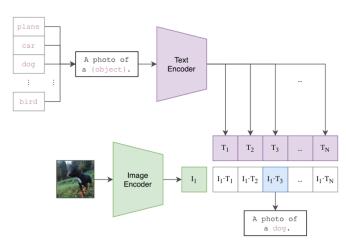
Reward Function Composition

Response Score:

Step 1. LLM-as-Judge evaluates candidate responses and assigns a relative response score.

Step 2. Handles uncertainty through weighted averaging of similar state-action pairs.

Task-Modality Association: Measures how well the text and target modality (e.g., image) align, based on cosine similarity between their representations from the CLIP model.



CLIP, OpenAl

Local LLM:

- Latency: Estimated using device FLOPS and model efficiency.

- **Usage Cost:** Calculated from electricity consumption.

Cloud LLM:

- Latency: Measured real inference time (upload → inference → download).

Usage Cost: Calculated based on provider pricing (e.g., OpenAl API rates).

Dataset Curation – Image Data

20 kitchen activities, including Peel a Cucumber, Peel a Potato, Clear Cutting Board, etc.

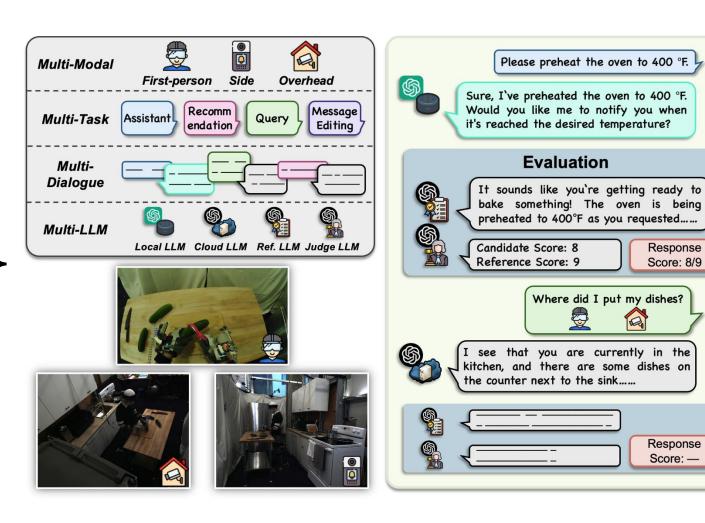
RGB+D Cameras

We use image data from three RGB cameras to construct our M4A1 dataset.

Dataset Curation – M4A1

Four types of task instructions, such as:

- Please preheat the oven to 400 degrees Fahrenheit.
- I'm feeling a little hot right now, please turn the temperature down a bit.
- Where did I put my dishes?
- Please draft a text message asking my friend to bring some ketchup on their way over.



Response

Score: 8/9

Response Score: -

Main Results

✓ TMO outperforms all baselines: naive, LLM-as-Agent, and SOTA methods.

	n	Tetanor Head Cod Orangi									4 T7: 1 4: (I)
Method	Response	Latency	Usage Cost	Overall	Local	Cloud - Num. Selected Modalities			Constraint Violation (1)		
	Score (†)	(s) (\bigcup)	(1e-3 USD) (↓)	Reward (†)		0 (text-only)	1	2	3	Latency	Usage Cost
Random	0.86 ±0.02	$10.00{\scriptstyle~\pm0.25}$	$12.32{\scriptstyle~\pm 0.23}$	0.71 ±0.01	2097	261	775	771	255	0.95 ±0.13	$0.89{\scriptstyle~\pm 0.83}$
Local	0.74 ±0.04	$0.04{\scriptstyle~\pm 0.00}$	$0.00{\scriptstyle~\pm 0.00}$	0.74 ±0.04	4203	0	0	0	0	0.00 ±0.00	$0.00{\scriptstyle~\pm 0.00}$
Cloud	1.04 ±0.01	$20.24{\scriptstyle~\pm0.18}$	$25.14{\scriptstyle~\pm 0.32}$	0.75 ±0.01	0	515	1583	1540	544	1.11 ±0.05	$2.69{\scriptstyle~\pm 0.34}$
LLM-as-Agent [14, 25] for Inference Offloading (Ignored LLM Agent's Latency and Usage Cost)											
Phi-3-mini	0.81 ±0.04	5.25 ±0.31	$7.54{\scriptstyle~\pm0.44}$	0.74 ±0.04	3089	0	613	207	295	0.00 ±0.00	0.00 ±0.00
Phi-3.5-mini	0.83 ±0.04	$5.63{\scriptstyle~\pm 0.38}$	$8.39_{\pm 0.57}$	0.76 ±0.04	3118	0	42	1044	0	0.00 ±0.00	0.00 ± 0.00
LLaMA-3.2-3B	1.05 ±0.02	$22.04{\scriptstyle~\pm0.27}$	35.08 ± 0.39	0.74 ±0.02	78	101	58	2955	1011	2.11 ±0.04	$4.02{\scriptstyle~ \pm 0.16}$
LLaMA-3.1-8B	0.89 ±0.02	$10.84{\scriptstyle~\pm0.18}$	$12.41{\scriptstyle~\pm 0.31}$	0.74 ±0.02	1933	381	1017	545	326	1.54 ±0.22	$3.79{\scriptstyle~\pm 1.02}$
Mistral-7B-v0.3	0.83 ±0.03	$14.46 ~ \scriptstyle{\pm 0.28}$	$1.10{\scriptstyle~\pm 0.02}$	0.64 ±0.03	1519	2684	0	0	0	0.00 ±0.00	0.00 ±0.00
FLAN-T5-large	1.01 ±0.04	$24.45 {\scriptstyle~\pm 0.28}$	$47.91{\scriptstyle~\pm0.55}$	0.68 ±0.04	0	0	0	0	4203	4.90 ±0.01	11.14 ± 0.36
FLAN-T5-xl	0.85 ±0.05	$12.95{\scriptstyle~\pm0.15}$	$9.59_{\pm 0.27}$	0.65 ±0.05	1452	1053	1408	0	289	0.00 ±0.00	0.00 ±0.00
Gemma-2-2b	0.74 ±0.04	$0.04{\scriptstyle~\pm 0.00}$	$0.00{\scriptstyle~\pm 0.00}$	0.74 ±0.04	4203	0	0	0	0	0.00 ±0.00	$0.00{\scriptstyle~\pm 0.00}$
Gemma-2-9b	0.74 ±0.04	$0.04{\scriptstyle~\pm 0.00}$	$0.00{\scriptstyle~\pm 0.00}$	0.74 ±0.04	4203	0	0	0	0	0.00 ±0.00	$0.00{\scriptstyle~\pm 0.00}$
GPT-3.5-turbo	0.99 ±0.02	19.96 ± 0.51	$33.75{\scriptstyle~\pm0.66}$	0.73 ±0.01	527	190	504	692	2292	2.97 ±0.15	5.86 ±0.39
GPT-4o-mini	0.74 ±0.04	$0.04{\scriptstyle~\pm 0.00}$	$0.00{\scriptstyle~\pm 0.00}$	0.74 ±0.04	4203	0	0	0	0	0.00 ±0.00	$0.00{\scriptstyle~\pm 0.00}$
GPT-40	0.85 ±0.05	$12.92{\scriptstyle~\pm0.29}$	$0.98{\scriptstyle~\pm 0.02}$	0.67 ±0.05	1807	2396	0	0	0	2.26 ±0.01	$0.00{\scriptstyle~\pm 0.00}$
OpenAI o1-mini *	0.77 ±0.03	$8.21{\scriptstyle~\pm 0.43}$	$0.62{\scriptstyle~\pm 0.03}$	0.66 ±0.03	222	127	0	0	0	1.13 ±0.81	0.00 ± 0.00
OpenAI o1 *	0.76 ±0.02	5.18 ± 0.16	$0.39{\scriptstyle~\pm 0.01}$	0.69 ±0.02	269	80	0	0	0	0.38 ±0.54	0.00 ±0.00
OpenAI o3-mini *	0.86 ±0.04	$16.91{\scriptstyle~\pm 1.18}$	$1.28{\scriptstyle~\pm 0.09}$	0.63 ±0.03	87	262	0	0	0	2.09 ±0.06	$0.00{\scriptstyle~\pm 0.00}$
Comparison with SOTA Exploration-Decision Baselines											
AIwRG [8]	1.02 ±0.05	23.73 ±0.98	44.01 ±3.50	0.69 ±0.06	113	244	0	0	3852	4.68 ±0.18	9.26 ±1.83
PerLLM [26]	0.97 ±0.06	$21.12{\scriptstyle~\pm0.08}$	$1.60{\scriptstyle~\pm 0.01}$	0.66 ±0.06	281	3922	0	0	0	0.00 ±0.00	0.00 ±0.00
TMO (PPO)	1.02 ±0.00	$17.89{\scriptstyle~\pm0.82}$	$22.48 {\scriptstyle~\pm 1.48}$	0.76 ±0.01	142	40	2499	1355	121	0.70 ±0.77	1.66 ±2.35
TMO (DQN)	1.02 ±0.08	19.57 ±2.18	$26.23_{\pm 6.36}$	0.75 ±0.05	0	5	1820	2367	0	0.81 ±0.57	0.00 ±0.00
TMO (A2C)	1.05 ±0.03	18.81 ±3.44	26.44 ± 13.05	0.79 ±0.07	98	0	2753	210	1168	1.48 ±2.09	2.38 ±3.36
TMO (RC-PPO)	1.03 ±0.03	18.33 ± 1.87	22.43 ± 3.57	0.77 ±0.04	90	105	2599	1309	110	0.45 ±0.64	0.00 ±0.00
TMO (RC-DQN)	1.05 ±0.05	$18.87 \scriptstyle~\pm 0.81$	$23.29_{\pm 3.59}$	0.78 ±0.06	46	174	2249	1636	85	0.53 ±0.33	$0.42{\scriptstyle~ \pm 0.60}$
TMO (RC-A2C)	1.09 ±0.08	$16.63{\scriptstyle~\pm0.67}$	$17.97{\scriptstyle~\pm 1.18}$	0.85 ±0.07	74	12	3871	225	6	0.00 ±0.00	0.00 ±0.00
Our TMO System - Ablation Study (Using RC-A2C as Backbone)											
w/o LLM Sel.	0.85 ±0.00	9.25 ±1.02	11.67 ±3.14	0.72 ±0.02	2128	6	1228	830	1	0.00 ±0.00	0.00 ±0.00
w/o Modality Sel.	1.04 ±0.02	20.13 ±0.07	24.82 ±0.21	0.75 ±0.02	0	528	1591	1519	528	1.17 ±0.07	2.74 ±0.87
w/o Score Est.	1.01 ±0.01	$16.71{\scriptstyle~\pm 0.28}$	17.76 ± 0.59	0.76 ±0.01	0	0	4095	89	0	0.00 ±0.00	0.00 ±0.00

Main Results

✓ TMO optimally selects LLMs and modalities, outperforming in response quality, latency, and usage cost without constraint violations.

Method	Response Latency		Usage Cost Overall	Local	Cloud - Num. Selected Modalities				Constraint Violation (↓)		
	Score (↑)	(s) (↓)	(1e-3 USD) (↓)	Reward (†)	Local	0 (text-only)	1	2	3	Latency	Usage Cost
Comparison with SOTA Exploration-Decision Baselines											
AIwRG [8]	1.02 ±0.05	$23.73{\scriptstyle~\pm 0.98}$	44.01 ±3.50	0.69 ±0.06	113	244	0	0	3852	4.68 ±0.18	9.26 ±1.83
PerLLM [26]	0.97 ±0.06	$21.12{\scriptstyle~\pm0.08}$	$1.60{\scriptstyle~\pm 0.01}$	0.66 ±0.06	281	3922	0	0	0	0.00 ±0.00	0.00 ±0.00
TMO (PPO)	1.02 ±0.00	$17.89{\scriptstyle~\pm0.82}$	$22.48 {\scriptstyle~\pm 1.48}$	0.76 ±0.01	142	40	2499	1355	121	$0.70{\scriptstyle~\pm 0.77}$	1.66 ±2.35
TMO (DQN)	1.02 ±0.08	19.57 ± 2.18	$26.23{\scriptstyle~\pm6.36}$	0.75 ±0.05	0	5	1820	2367	0	0.81 ±0.57	0.00 ±0.00
TMO (A2C)	1.05 ±0.03	$18.81{\scriptstyle~\pm3.44}$	$26.44 {\scriptstyle~\pm 13.05}$	0.79 ±0.07	98	0	2753	210	1168	1.48 ±2.09	$2.38_{\pm 3.36}$
TMO (RC-PPO)	1.03 ±0.03	$18.33{\scriptstyle~\pm 1.87}$	22.43 ± 3.57	0.77 ±0.04	90	105	2599	1309	110	$0.45{\scriptstyle~\pm0.64}$	0.00 ±0.00
TMO (RC-DQN)	1.05 ±0.05	$18.87{\scriptstyle~\pm0.81}$	23.29 ±3.59	0.78 ±0.06	46	174	2249	1636	85	0.53 ±0.33	$0.42{\scriptstyle~ \pm 0.60}$
TMO (RC-A2C)	1.09 ±0.08	$16.63{\scriptstyle~\pm0.67}$	$17.97{\scriptstyle~\pm 1.18}$	0.85 ±0.07	74	12	3871	225	6	0.00 ±0.00	$0.00{\scriptstyle~\pm 0.00}$

Main Results

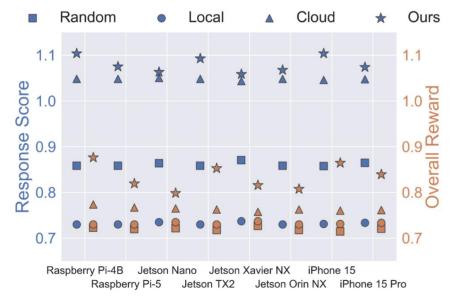
✓ Ablation studies confirm that LLM selection, modality selection, and score estimation are all crucial to performance.

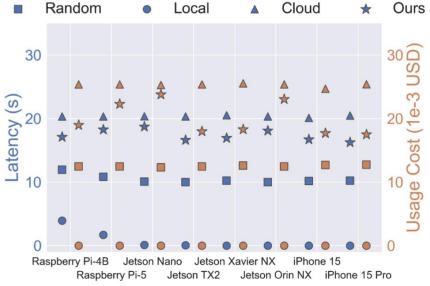
Method	Response Score (↑)	Latency (s) (↓)	Usage Cost (1e-3 USD) (↓)	Overall Reward (↑)	Local	Cloud - Nun 0 (text-only)	ı. Selec	ted Mo	dalities 3	Constrain Latency	t Violation (↓) Usage Cost
TMO (RC-A2C)	1.09 ±0.08	16.63 ±0.67	17.97 ±1.18	0.85 ±0.07	74	12	3871	225	6	0.00 ±0.00	0.00 ±0.00
Our TMO System - Ablation Study (Using RC-A2C as Backbone)											
w/o LLM Sel.	w/o LLM Sel. 0.85 ±0.00 9.25 ±1.02 11.67 ±3.14 0.72 ±0.02 2128 6 1228 830 1 0.00 ±0.00 0.00 ±0.00										
w/o Modality Sel.	1.04 ±0.02	$20.13{\scriptstyle~\pm 0.07}$	$24.82 {\scriptstyle~\pm 0.21}$	0.75 ±0.02	0	528	1591	1519	528	1.17 ±0.07	$2.74{\scriptstyle~\pm 0.87}$
w/o Score Est.	1.01 ±0.01	$16.71{\scriptstyle~\pm0.28}$	17.76 ± 0.59	0.76 ±0.01	0	0	4095	89	0	0.00 ±0.00	$0.00{\scriptstyle~\pm 0.00}$

Different Local Devices

✓ TMO operates robustly across diverse devices, maintaining top performance while balancing latency and cost.

Local Device	Performance (TFLOPS)	Power (Watts)	Latency (s)	Usage Cost (1e-3 USD)	
Raspberry Pi-4B	0.0135	8	1.12593	4.17e-4	
Raspberry Pi-5	0.0314	12	0.48408	2.69e-4	
Jetson Nano	0.472	10	0.03220	1.49e-5	
Jetson TX2	1.33	15	0.01143	7.94e-6	
Jetson Xavier NX	21	20	0.00072	6.71e-7	
Jetson Orin NX	100	25	0.00015	1.76e-7	
iPhone 15 (A16)	15.8	15	0.00096	6.69e-7	
iPhone 15 Pro (A17 Pro)	35	15	0.00043	3.02e-7	

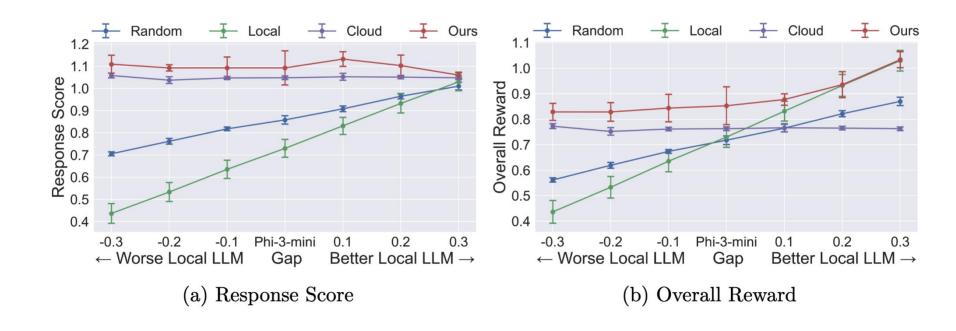




(b) Latency & Usage Cost

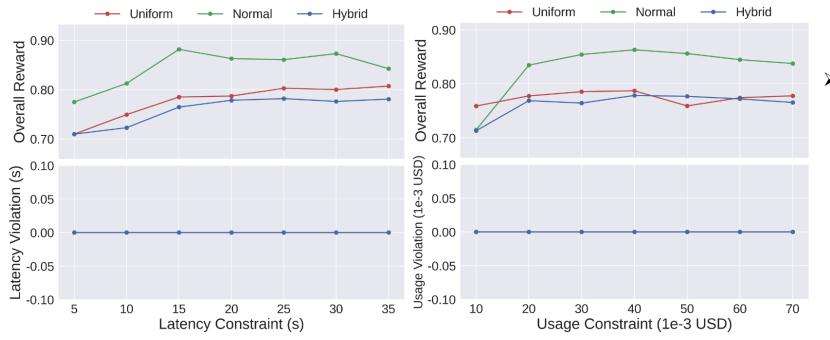
Different Local LLMs

✓ TMO adapts to any local-cloud LLM combination, consistently achieving strong performance.



More Recently – Better Resource Constraints

✓ TMO adapts to arbitrarily user-specified resource constraints post-training, consistently achieving strong performance without violating them.



Resource-Aware and Generalization: Random resource budgets are assigned during training, following Uniform, Normal, or a Hybrid (Uniform + Normal) distribution.

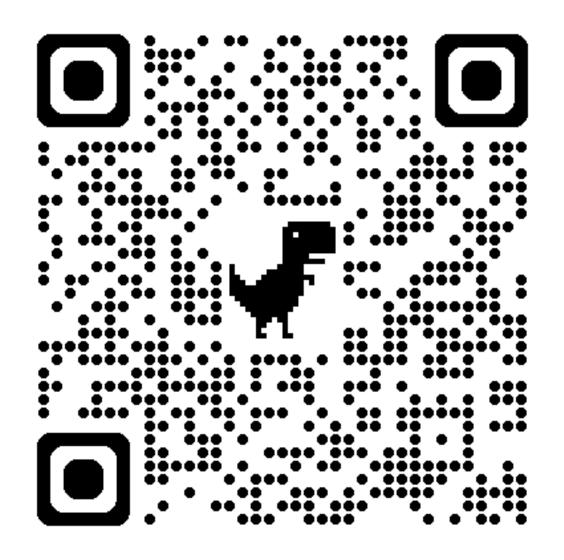
Thank you!

Liangqi Yuan

Dong-Jun Han

Shiqiang Wang

Christopher G. Brinton



Scan for Full Paper