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ABSTRACT Human sensing is significantly improving our lifestyle in many fields, such as elderly
healthcare and public safety. Research has demonstrated that human activity can alter the passive radio
frequency (PRF) spectrum, which represents the passive reception of RF signals in the surrounding
environment without actively transmitting a target signal. This article proposes a novel passive human
sensing method that utilizes PRF spectrum alteration as a biometrics modality for human authentication,
localization, and activity recognition. The proposed method uses software-defined radio (SDR) technology
to acquire the PRF in the frequency band sensitive to human signature. Additionally, the PRF spectrum
signatures are classified and regressed by five machine learning (ML) algorithms based on different
human sensing tasks. The proposed sensing humans among PRF (SHAPR) method was tested in several
environments and scenarios, including a laboratory, a living room, a classroom, and a vehicle, to verify
its extensiveness. The experimental findings demonstrate that the SHAPR system, in conjunction with
the random forest (RFR) algorithm, achieves human authentication accuracies of 95.6% and 98.7% in
laboratory and living room scenarios, respectively. In a vehicular setting, grid-level localization accuracy
reaches 99.1%, and in a laboratory environment, activity recognition accuracy is attained at 99.1%.
Moreover, within a classroom scenario, the SHAPR system, when integrated with the Gaussian process
regression (GPR) model, can realize coordinate-level localization with an error margin of merely 0.8 m.
These results indicate that the SHAPR technique can be considered a new human signature modality with
high accuracy, robustness, and general applicability.

INDEX TERMS Authentication, biometrics, human activity recognition, human sensing, indoor
localization, spectrum monitoring.

I. INTRODUCTION

HUMAN modality recognition is increasingly popular
due to the availability of low-cost monitoring and high-

resolution sensing devices. Human sensing technology has
been widely used in various fields, such as indoor navi-
gation, access control, security systems, safety equipment,
and autonomous vehicles. For example, first responders can
quickly locate injured persons through human sensing tech-
nology during rescue operations. In the automotive industry,
human sensing applications are mainly used for pedes-
trian detection and driver/passenger authentication. Biometric
attributes, such as face, iris, fingerprints, gait, and voice,
are commonly used to achieve human sensing [1], [2], [3],
[4], [5]. Each sensing modality has its strengths and

weaknesses. For instance, facial recognition is convenient
and accurate, but its performance is highly dependent on
the image quality, and it raises privacy concerns. This
article proposes a novel human sensing modality, sensing
humans among passive radio frequency (SHAPR) based on
the radio frequency (RF) spectrum for human authentication,
localization, and activity recognition.

A. RADIO FREQUENCY SPECTRUM MONITORING
With the rapid development of RF technology, the effective
management of spectrum resources has become increasingly
vital for efficient information transmission and the utiliza-
tion of limited spectrum resources. RF spectrum monitoring
plays a critical role in this by using specialized equipment
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and technology to measure the basic parameters and spec-
trum characteristics of radio emissions [6]. RF monitoring
involves obtaining, identifying, measuring, analyzing, and
scanning signals using RF observation equipment to limit
signal interference and ensure the normal operation of RF
equipment. Furthermore, as spectrum monitoring technology
advances, it has the potential to be used for human sensing
applications.
As an electromagnetic wave, an RF signal can be affected

by different materials, such as metal and liquid [7], [8]. Given
that a significant portion of the human body is composed
of liquid, it can be viewed as an equal volume of liquid
that absorbs RF signals present in the environment [9], [10].
The presence of liquid in the human body can affect the RF
signal in various ways, including absorption, reflection, and
emission, potentially altering the original RF spectrum [11].

B. MOTIVATION AND PROPOSED SOLUTION
Although RF technology has made significant progress in
the field of human sensing, several limitations and chal-
lenges hinder the practical application of mainstream RF
technology.
1) Active RF sensing technologies may compromise their

main function. For example, WiFi, one of the most
popular human sensing technologies, is unsuitable for
human sensing applications in a real WiFi communi-
cation environment due to unpredictable back-offs and
packet sizes [12], [13].

2) Active sensing methods require transmitting and
receiving signals actively. While active sensing can
detect accurately, it consumes more energy and takes
over the limited frequency bandwidth resource. The
proposed system allows the selection of sensitive
frequency bands, which not only saves energy but also
improves the speed of data acquisition.

3) The environment is permeated with a variety of RF
signals, yet the impacts and potential harm they pose
to the human body remain inconclusive. Hence, passive
sensing could reduce the health risk of being radiated
by active transmitters. If passive sensing can achieve
comparable accuracy to active sensing, passive sensing
techniques are superior to active sensing techniques.

4) Mainstream RF technologies, such as Wi-Fi, RFID,
and mmWave, require expensive transmitters, mak-
ing them cost-prohibitive for many use cases. The
proposed system only captures the useful spectrum
information from environments. There is no require-
ment for transmitters to emit specific spectrums, nor is
there a need to utilize energy to power the transmitters.

At the same time, passive sensing techniques using passive
RF (PRF) technology have shown promise for human moni-
toring applications [14], [15], [16], [17], [18]. Unlike active
sensing methods, passive sensing does not emit any artificial
signals and can utilize the PRF spectrum as a new modality
for human signature detection. This approach is also environ-
mentally friendly as it does not utilize the crowded frequency

band. Additionally, passive sensing techniques are preferred
as they do not pose any health risks from nonionizing radi-
ation from radio signals. Thus, passive sensing can provide
comparable results to active sensing while being a safer and
more sustainable solution.
Machine learning (ML) is a popular method to solve clas-

sification, regression, and clustering problems. For biometric
applications, subject authentication, and activity recogni-
tion fall under the classification problem category, similar
to other human sensing techniques [19]. The localization
task is a regression problem because it classifies a partic-
ular region [20]. To implement the feasibility test of the
PRF-based human sensing framework, we compared five
ML algorithms, selected for their transparency, simplicity,
and comprehensibility. Deep learning (DL) neural networks
(NNs) provide the convenience of automatic feature extrac-
tion with weights and biases. Recurrent NNs (RNNs) are
one of the most popular NNs used for time-series data pro-
cessing in recent years. Those ML methods used in human
sensing depend on different tasks.
In this article, we propose a novel human sensing system,

SHAPR, emphasizing transmitter-free and device-free solu-
tions. The SHAPR system leverages software-defined radio
(SDR)-driven PRF sensor-based receivers that passively
receive RF signals in various scenarios. By passively receiv-
ing RF signals in various scenarios, SHAPR leverages the
heterogeneous human RF signature created by the human
body’s effect on ambient RF signals to enable ML algo-
rithms to efficiently perform classification or regression.
We conducted three experiments in four common sce-
narios, including laboratory, living room, classroom, and
vehicle, which involved human authentication, localization,
and activity recognition. The experimental results reveal
that the proposed SHAPR system attains human authenti-
cation accuracies of 95.6% and 98.7% in laboratory and
living room scenarios, respectively. Additionally, it achieves
a grid-level localization accuracy of 99.1%, along with
an activity recognition accuracy of 99.1%. Furthermore,
SHAPR is capable of estimating human subject position-
ing with coordinate-level localization, maintaining an error
margin of less than 0.8 m. This article’s contributions are as
follows.
1) We provide an extensive investigation, comparison,

discussion, and summarization of the characteristics of
active RF and the proposed SHAPR system. Through
systematic construction, observation, and experimen-
tation, we confirm the effectiveness and potential of
PRF technology.

2) We propose a novel, transmitter-free, and device-free
PRF-based human sensing system, SHAPR, which
offers a new modality for biometric and human
monitoring applications.

3) We evaluate the SHAPR system in three human
sensing applications across four experiment scenar-
ios, showcasing its performance, effectiveness, and
robustness.
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4) We utilize multiple ML techniques to perform classifi-
cation and regression tasks on processing PRF signals.
The results demonstrate the high accuracy, reliabil-
ity, and general applicability of the proposed SHAPR
system.

This article is structured as follows. Section II reviews
the radio spectrum monitoring-related knowledge and appli-
cations, existing human sensing techniques, the feature, and
applications of SDR, and several ML methods. Section III
describes some passive sensing technologies and the features
of the SHAPR passive sensing system. Section IV presents
the proposed human sensing SHAPR system. Section V
shows the experimental results, including authentication,
localization, and activity recognition results. Conclusions and
future directions are discussed in Section VI.

II. RELATED WORKS
A. RADIO FREQUENCY TECHNOLOGY
Radio technology can transmit signals through radio waves.
The principle of RF technology is based on the theory of
electromagnetic waves. The radio signal can be transmitted in
an air or vacuum environment. RF information transmission
through radio waves requires modulation. When the electric
wave propagates in space and reaches the receiver, the radio
information can be extracted through demodulation.
Radio has a wide range of applications. The earliest appli-

cation of radio is the telegraph. The use of the Morse
telegraph transmitted information between ships and land
stations. With the rapid development of wireless com-
munication technology, the number of available frequency
bands has greatly increased. Radio applications are becom-
ing more extensive. Nowadays, the main applications of
radio include broadcasting, radar, communication satellites,
navigation systems, and networks.
Radio waves are generated by the rapid vibration of the

magnetic fields. The speed of vibration is the frequency
of the wave, and different frequency bands can be used
to transmit various information. The radio spectrum (i.e.,
frequency bands) comprises electromagnetic waves with
frequencies between 3 Hz and 300 GHz. The International
Telecommunication Union (ITU) divides the radio spectrum
into 12 frequency bands.
The RF spectrum is an essential resource for society. Many

countries have rigorous control over the use of the RF spec-
trum, e.g., the U.S. government owns nearly 60% of the
radio spectrum. Due to the limited radio spectrum resources,
the pragmatic use of spectrum monitoring becomes crucial.
If the RF spectrum use and changes can be recorded and
analyzed, the spectrum resources can be effectively utilized.
More discussion will be described in Section III.

B. SOFTWARE-DEFINED RADIO
SDR is a standardized modular hardware platform used to
monitor the RF spectrum. SDR can realize many opera-
tions through software, such as selecting and controlling
frequency bands, modem types, data formats, encryption

modes, communication protocols, etc. The development of
different software modules can achieve different functions,
and the software can be upgraded and updated. For example,
SDR produces various modulation waveforms and commu-
nication protocols and communicates with various traditional
radio stations, which broadens the application environment
and saves costs.
Many applications of SDR exist for human biometrics. For

instance, the SDR is tuned to scan only the frequency bands
that are sensitive to human occupancy to improve power effi-
ciency [14]. SDR has been widely used in communications,
spectrum monitoring, and RF transmitter identification [21],
specifically in improving the power amplifier system and
transmitter architecture [22]. SDR can be utilized to realize
real-time communication [23], receive the animals’ nerve
signals [24], recognize gestures through Wi-Fi signals [25],
and among others. The position of the mobile station can
be estimated by using the signal strength received by the
SDR [26]. SDR is used to scan the RF signal spectrums to
detect and estimate human occupancy. In our system, the
RTL-SDR, equipped with an RTL2832U chip, is utilized
to scan and monitor radio frequencies and to collect raw
data. A single RTL-SDR kit includes an RTL2832U chip, a
cable, and an antenna. The dimensions of the RTL2832U are
100 mm × 30 mm × 10 mm, and it weighs a mere 60 g.
The total cost is around U.S. $30. Consequently, the SDR
devices used in our experiments are economical, compact,
and facile to deploy. The frequency band that is sensi-
tive to human occupancy is selected through DL methods
for further scanning. The specific frequency bands rang-
ing from 300 to 420 MHz are monitored by developing the
SDR software.

C. MACHINE LEARNING ALGORITHMS
Traditional ML methods, such as decision tree (DT), sup-
port vector machine (SVM), k-nearest neighbors (k-NN),
and random forest (RFR), and DL methods, such as convo-
lutional NN (CNN) and RNN have been utilized to sense the
human subjects in previous work. DT refines a feature set
through analysis of meaningful features based on the domain
of interest, such as for human movements [27]. SVM is a sta-
tistical method to align features to categories. For example,
gender identification of human faces has general features
for normal categories of SVM [28]. RFR is also a popu-
lar solution to realize human activity recognition with good
accuracy [29].

Gaussian process regression (GPR), an ML model for
solving regression problems, is a nonparametric model that
uses Gaussian process priors to perform regression analysis
on data. GPR can provide the posterior of the prediction
result, and when the likelihood is normally distributed, the
posterior has an analytical form. GPR has been applied in
the fields of image processing and automatic control [30].
GPR is found to be very suitable for solving position-
ing problems [31], [32] and the prediction results obtained
by GPR are highly accurate [33]. The advantages of GPR
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include using only a few training data points for regression
to acquire all position results, predicting high-dimensional
data, and flexibly using different kernel functions to con-
struct the relationship between the independent variables and
the dependent variables [34]. In SHAPR, the independent
variables are PRF spectrums, and the dependent variables
are humans occupying positions. The GPR model is used to
infer the relationship between the PRF spectrums and human
occupying positions.

III. UNDERSTANDING OF PASSIVE SENSING
Radio signals can be classified as active or passive. Active
RF involves transmitting a signal from a known transmit-
ter, which is then received and measured by devices using
a conversion circuit to detect any changes in the signal.
In contrast, PRF relies on receiving signals from multiple
transmitters, with a selected receiver detecting changes in
the external measured signal, which is then monitored by
a sensitive element and conversion circuit. Passive signals
are used in applications such as passive radar and passive
RFID technology. Human sensing is achieved by observing
specific human characteristics and properties.

A. PASSIVE RADAR
Radar systems can be broadly categorized into active and
passive types. Active radar is a traditional system that emits
electromagnetic waves to detect, locate, and track targets. In
contrast, passive radar (also called bistatic radar) operates by
passively observing external radiation sources without emit-
ting energy itself. It detects targets by receiving microwave
energy reflected by warm objects or other sources. Passive
radar systems consist of an antenna and a susceptible receiv-
ing device. Passive radar systems can achieve rapid detection
of targets [35]. Passive radar adds subarray to enhance anti-
jamming capability and realizes multitarget positioning [36].
Passive radars utilize signal transmissions to achieve target
localization and navigation [37]. Some searchers use satellite
illumination to realize multiband passive radar imaging [38].
However, due to the reliance on third-party transmitters, the
operator cannot actively control the transmitter. When the
effective radiation power of transmitters is low, the signal
between the target and the receiver is blocked, or the signal
between the receiver and the transmitter is blocked, and the
passive radar cannot be used to validate the signal.

B. PASSIVE RFID
RFID is a communication technology that can identify spe-
cific targets and read/write-related data through radio signals
without establishing mechanical or optical contact between
the identification system and specific targets. RFID includes
a passive or an active tag. The principle of passive RFID is
that after the tag enters the reader area, the tag can accept the
microwave signal transmitted by the RF identification reader.
Relying on the energy obtained by the induced current, the
product information stored in the tag can be read. RFID has
a wide range of applications. Typical applications include

animal chips, car chip anti-theft devices, access control,
parking lot control, and automated production lines. The
main limitation of RFID technology is that RFID electronic
tag information is easily read and maliciously revised. There
are many RFID developments such as ultrahigh-frequency
(UHF)-RFID passive tags to locate drone positions [39].
Furthermore, RFID technology can also be used for train
localization based on passive tags [40]. Some researchers
used an RFID tag, which is fabricated from electro-textile
materials and integrated it into clothing to detect body
movement for human–technology interaction [41]. RFID as
exploited by a CNN-supported gate control [42]. RFID tech-
nology can also be applied to monitor and control the posture
of the cane to help vision-impaired people [43].

C. SHAPR SYSTEM
Human sensing systems have a broad range of applications,
including traditional methods of human authentication, such
as facial or fingerprint recognition. These methods require
the human subject to touch or be close to the receiver, and
the accuracy of the authentication is dependent on the qual-
ity of the image. The SHAPR system, however, scans the
surrounding PRF spectrum and does not require specific
imaging or receiver quality. Additionally, unlike traditional
localization methods, the proposed human localization does
not require the mapping of radio signal strength at each loca-
tion. Instead, several SDRs are placed at fixed locations to
acquire the PRF spectrum, and human subjects do not need
to wear any receivers or tags. ML algorithms are then applied
to classify the spectrum alterations and realize the localiza-
tion. The SHAPR solution also benefits activity recognition,
as human subjects do not need to carry multiple sensors to
detect their posture.
In this research, we utilized the unique characteristics of

PRF signals and ML methods to achieve human sensing.
Passive signals offer several advantages overactive signals.
1) Passive signals do not require a specific signal source

or transmitter, so the SHAPR system does not need to
allocate any spectrum resources.

2) Passive signals are safer than active signals as they do
not emit any radiation and rely on receiving signals
passively, leading to lower power requirements.

3) The proposed SHAPR system is realized by acquiring
the surrounding PRF signal. Any signal, even noise
can be used in passive sensing.

4) Passive signals are more friendly than active sig-
nals because passive signals are relatively easy to
deploy and have low maintenance costs. Based on the
above-mentioned advantages, human sensing applica-
tions realized by using passive signals will significantly
broaden the application of the RF spectrum.

IV. METHODOLOGIES
The proposed SHAPR system mainly includes three parts:
1) RTL-SDR sensor hardware components; 2) data prepro-
cessing; and 3) signal exploitation with MLs, including a
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FIGURE 1. Flowchart of the proposed SHAPR system.

regressor and classifiers. In the PRF sensor part, the PRF
sensors are used to collect raw data in different environments
for specific human sensing applications. Data collection in
the most sensitive frequency band of the human body is
highlighted in this part. In the data preprocessing part, we
analyze the raw in-phase and quadrature (I/Q) components
and convert them to average power, which is used as the
feature vector in the spectrum data. In the signal exploita-
tion part, five classifiers and one regressor are proposed to
extract, fit, and predict the dataset.

A. SHAPR SYSTEM STRUCTURE
This article presents passive human sensing with RF classifi-
cation approaches utilizing a new biometric sensing modality.
A passive spectrum monitoring method is developed to col-
lect human subject signature samples, which are used to train
ML algorithms to achieve human sensing.
The proposed SHAPR system is shown in Fig. 1. Part of

the indoor RF signals reach the SDR antenna after passing
through the human body. SDR passively receives RF sig-
nals at a customer frequency band, including signals passing
through the human body and other cluttered invalid signals.
Different subjects performing tasks in different scenarios
lead to different backscattering, refraction, and absorption of
signals passing through the human body, which leads to dif-
ferent spectrum signatures received by SDR. The collected
dataset trains ML models to recognize different subjects,
activities, and positions, which enables human sensing.
RTL-SDR is an SDR that utilizes digital video broadcast

technology (DVB-T) for television (TV) tuners, incorporat-
ing RTL2832U chips, as depicted in Fig. 2. Table 1 presents
some fundamental information related to SDR.
SDR uses modern software to control the traditional wire-

less communication technology of hardware circuits, which
is used to collect PRF signals in the system. The value
of software radio technology is that the realization of the
communication functions of traditional radio communication
equipment can be developed by software versus designing
new hardware.
RTL-SDR collects channel state information (CSI), but

CSI is not suitable for passive signals. The main reason is
that the passive signal originates from an uncertain direction,
which causes uncertainty in the angle information contained
in the CSI information which limits the ML model con-
struction. The second reason is that the influence of the
human body on the PRF signal is generated in a frequency
band rather than a specific frequency and using CSI will
increase the difficulty of ML fitting. Therefore, we only use
received signal strength indication (RSSI) as the feature of

FIGURE 2. SDR antenna and RTL2832U chips.

TABLE 1. RTL-SDR information.

FIGURE 3. Average power curve from 300 to 420 MHz for five SDR antennas at
different locations.

the human spectrum. The collected data is the surrounding
RF signals from the scenarios. Several RTL-SDRs are uti-
lized to collect data. Previous research shows that some of
the sensitive frequency bands for human occupancy are from
320 to 420 MHz. In this article, 300–420 MHz is selected
as our experimental setup. For each frequency, we collected
N CSI samples to calculate the RSSI average power in dB,
which should be calculated as follows:

P(f ) = 10 · log10

∑N
i=1

(
sf (i)
127.5 − 1

)2

N/2
(1)

where signal average power P is a function of the frequency
band center f . N is the number of samples in each frequency
band, which is 4800 in our experiment. sf (i) is the value
of the ith raw data received by the SDR device when the
frequency band center is f .

Fig. 3 shows an example of the average spectrum power
collected by SDR. SDR antennas at different locations are
labeled as A, B, C, D, and E. There are great differences in
the PRF signals collected by the SDR antennas at different
locations, which means that the PRF signals have different
characteristics in different locations. The possible reasons for
these different characteristics are the propagation direction
of the RF signal in the scenario, the nonlinear propagation,
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the distance between the human body and the SDR, the
influence of other objects, etc.

B. SHAPR SYSTEM MECHANISM
For the SHAPR system, we do not know a priori information
about the transmitters present in the scenario. Therefore, the
mechanisms that enable human sensing can be viewed as
the superposition of multiple ambient signals on the human
body, including multipath absorption, reflection, refraction,
scattering, and so on. Also, it is an open question whether
the human body transmits RF signals or not. We analyze the
human sensing mechanism based on three human monitoring
applications.
Authentication: Five ML algorithms are used to associate

spectrum samples with different human subjects, including
DT, SVM, k-NN, RFR, and RNN. The input of the five
ML classifiers is the average power spectrum density, and
the output is the index of the human subjects. A total of
140 samples of the power spectrum density are split into
70% training data set and 30% testing data set. As high-
lighted, since the subjects are known, the scenario represents
the opportunity for human subject authentication. Inherent in
the analysis is that movement supports detection and recog-
nition, and SHAPR classifies the subjects. With a known
training signature of specific people, the spectrum can be
used to not only classify a human subject but also as com-
pared to a known signature, ID a specific person who has
appropriate access assuming they consented to the P-RF col-
lection to create their profile—as consistent with fingerprint
access.
Localization: Two localization experiments are conducted

in a mobile vehicle and static classroom. The vehicle used
in our experiment has four seats. One human subject sat at
each seat in order. Each seat has an index. Five SDRs are
used to collect raw data. And then, five ML models, SVM,
k-NN, DT, RFR, and RNN, are trained to classify differ-
ent human subjects’ occupancy locations. The input is the
normalized spectrum density, and the output is the index of
human location. In the classroom, a human subject occupies
one location when five SDRs scan the spectrum simultane-
ously. Only one human subject is inside the environment
during the experiments.
The coordinate-level localization method is conducted

with GPR. The first is to build a training dataset, where
the input is the spectrum power collected by five SDRs,
and the output is the human occupancy coordinates. The
second is to set a mean and kernel function. The kernel
function represents the covariance function. The third is to
combine the covariance function and training set to calcu-
late a covariance matrix. The fourth is to provide a predicted
dataset and put the input of the predicted spectrum power
into the trained model. The final is to get the prediction posi-
tion coordinates by the means, covariance matrix, and new
dataset.
The details of how SHAPR uses GPR are described in

this section. The spectrum density of each known location

and corresponding coordinates is the training set D for GPR

D = {xi, yi}i=1,...,n. (2)

The input vector x represents the stacked spectrum of
multisensors. The output y is the coordinates of the human
subject location. i represents the sample index in D. The
collected sample amount is denoted by n. The mean μ(xi)
and covariance k(xi, xj)i,j=1,...,n are determined as follows:

μ(xi) = E
[
yi
]

(3)

k
(
xi, xj

)
i,j=1,...,n = σ 2 exp

(

−
∥
∥xi − xj

∥
∥2

2l2

)

(4)

yi ∼ GP
(
μ(xi), k

(
xi, xj

))
(5)

where the mean μ(xi) is equivalent to 0 in the Gaussian
process. σ and l are the hyperparameters representing
the variance and length scale, respectively, which can be
acquired by maximum-likelihood estimation (MLE). The
joint prior distribution of predicted and training values can
be obtained as

K =
⎡

⎢
⎣

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

⎤

⎥
⎦ (6)

where each row can be defined as

K∗ = [k(x∗, x1) . . . k(x∗, xn)] (7)

and the diagonal elements can be expressed as

K∗∗ = k(x∗, x∗) (8)

resulting in
[
y
y∗

]

∼ N

(

0,

[
K KT∗
K∗ K∗∗

])

(9)

where x∗ and y∗ represent the spectrum and coordinates in
the testing dataset, respectively. The expected value of the
predicted position can be determined by

ŷ∗ = KT∗K−1y. (10)

Thus, the coordinates of the predicted coordinate can be
calculated by the trained model. The Euclidean distance d,
i.e., root mean-square error (RMSE), between the actual and
predicted positions is used to get the prediction error as

d(ŷ∗, y∗) =
√
√
√
√

n∑

i=1

(ŷ∗ − y∗)2. (11)

Activity Recognition: Human subjects produce different
RF characteristics based on known activities. These activ-
ity characteristics result from dynamic and static differences
in human activity, differences in human posture, and differ-
ences in position in a scenario. Eight typical activities, which
include using Smartphone, Sitting, Watching TV, Walking,
Standing, Exercise, writing on the Board, and simulating
Falls, are recorded for ML training and classification testing.
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TABLE 2. SDRs setup in experiments.

FIGURE 4. Illustration of the laboratory scenario is used for human authentication
and activity recognition.

V. EXPERIMENT AND RESULTS
In our experiments, the SHAPR system is validated on four
scenarios, i.e., laboratory, living room, classroom, and vehi-
cle, and three classification tasks, i.e., human authentication,
grid localization, and activity recognition, and a regression
task, i.e., coordinate localization. In this section, multiple
ML algorithms are used to demonstrate the high accuracy,
applicability, and generality of the proposed system.

A. EXPERIMENTAL SETUPS
RTL-SDR with the RTL2832U chip as the main SDR equip-
ment for PRF spectrum collection was primarily due to its
cost-effectiveness. 300–420 MHz band falls within the UHF
range, which is susceptible to interference than other lower-
frequency signals. Moreover, UHF is sensitive to metals and
water. Given that the human body mainly comprises water,
our prior research found this frequency range to be particu-
larly responsive to human presence, therefore, the frequency
bands used in the SHAPR system are from 300 to 420 MHz.
In order to improve data collection efficiency, the sampling
rate is set at 2.4 MHz, with a 1.2-MHz scanning step. There
are 505 features collected by five devices. 4800 samples per
frequency band are scanned in 2 ms. The parameter settings
for the SDR device are listed in Table 2.
In general, metal objects or liquids have a certain effect

on the transmission of the signal. Considering the impact of
diverse environments, the proposed SHAPR human sensing
system is tested and verified on several scenarios for each
task. These scenarios and tasks are set based on the previous
literature and daily life experience.
Human authentication and activity recognition task set-

tings include the laboratory scene due to its relatively
narrow space and the characteristics of multiple sources of
interference.
As shown in Fig. 4, there are multiple computers, a

refrigerator, a printer, and other electronic equipment in the
laboratory, which have potential for PRF interference. Five
SDR antennas are placed on the table. Subjects may be

FIGURE 5. Illustration of the living room scenario is used for human authentication.

FIGURE 6. Illustration of the classroom scenario is used for human localization.

stationary or moving in the laboratory according to exper-
imental instructions. The red computer is connected to the
SDRs to collect the PRF signal. In particular, the presence
of the metal cabinet in the laboratory is also a challenge due
to the metal-sensitive property of PRF signals.
Fig. 5 shows the living room scenario. Five SDR antennas

are placed on the ground and surrounded the human sub-
ject. Compared to the lab scenario, the living room scenario
has a larger range but less electrical interference. The elec-
tronic interference in the living room mainly comes from the
TV, and other nonmetallic furniture, such as sofas, tables,
and chairs, have minimal interference to the PRF signal.
Human authentication in the living room scenario is a com-
plementary experiment relative to the laboratory. Compared
to activity recognition, human authentication is a more chal-
lenging task. Since the human body has different variables,
such as position, shape, orientation, height, etc. Human
authentication requires subjects to be fixed in the same posi-
tion and maintain the same posture so that the influence of
other variables is reduced to the minimum. Therefore, we
again conduct secondary experiments in the living room sce-
nario to improve the credibility of our proposed PRF human
sensing system on the human authentication task.
Fig. 6 shows the classroom scenario with the largest area.

Five SDR antennas are placed on the ground. Subjects con-
duct data collection at 20 locations. Compared with the
laboratory and living room, the classroom has the largest
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FIGURE 7. Illustration of the vehicle scenario is used for human localization.

TABLE 3. Data collection in experiments.

TABLE 4. Human authentication accuracy for different ML algorithms in the
laboratory and the living room scenarios.

area, so human localization in the classroom scenario is also
a challenging task.
Human localization in vehicle scenarios is an interesting

task, as shown in Fig. 7. Subjects collected data in the driver,
front passenger, and two rear seats. Since the vehicle sce-
nario is surrounded by metal, the RF signal from the outside
cannot penetrate, and the position of the subject is closer,
which leads to difficulties in human localization. Table 3
summarizes the data collection in these scenarios, including
the classification category amount and the sample amount
in each category.

B. AUTHENTICATION
The authentication task is conducted in two scenarios, includ-
ing the laboratory and the living room, demonstrated in
Figs. 4 and 5, respectively. A group of unoccupied sam-
ples is collected as a comparison. ML algorithms are used
to realize authentication. The authentication results of the
DT, SVM, k-NN, RFR, and RNN are shown in Table 4.
Table 4 shows that authentication of human subjects can

be realized with 95.6% and 98.7% in the laboratory and

FIGURE 8. Confusion matrix of authentication in (a) laboratory and (b) living room
scenario by using RFR.

living room, respectively, using the random forest regres-
sion (RFR) method. In both scenarios, the RFR algorithm
achieves the best accuracy in the authentication task; while
it is difficult to discern the relative importance of the other
methods and hence, all should be considered for system
implementation. The experimental results imply that different
human subjects can produce different signatures on the PRF
spectrum. The experiment requires the subjects to remain
static at the indicated location for data collection, so the sub-
ject’s behavioral habits do not have an impact on the PRF
spectrum. Thus, the reason for the success in the authentica-
tion task may be the difference in the subjects’ physiological
information, such as height, weight, body type, age, gender,
body water ratio, etc. Fig. 8 shows the confusion matrix for
the human authentication task in the lab and in the living
room.
In particular, the authentication task is compared in two

different scenarios. The living room is relatively more
straightforward than the laboratory because there are some
electronic devices and mental objects in the laboratory that
may interfere with the spectrum. Also, different subjects are
utilized for the experiment in the laboratory and the liv-
ing room, i.e., the experimenters and family members. We
obtained more subjects for the experiments in the laboratory
because the laboratory has more experimenters available than
in the living room environment, which is in line with the
actual use case. Also, family members (living room) had
a more significant variance in age and physiological status
compared to experimenters who are all students (laboratory).
From the results of Table 3 and Fig. 8, the reason for the
overall higher accuracy of the living room may be the phys-
iological difference between the subjects. Regardless, the
RFR accuracy is 95.6% and 98.7% in the laboratory and
the living room, which demonstrates the capability of the
proposed SHAPR system for human authentication.

C. LOCALIZATION
The localization task is also developed in two scenarios,
including the classroom and the vehicle. For the vehicle
scenario, the vehicle space is smaller than the classroom. In
the vehicle scenario, the positions of the subjects are fixed:
driver, front passenger, and two rear seats, each indexed
with 1, 2, 3, and 4. However, in the classroom scenario, a
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TABLE 5. Human localization accuracy for different ML models on the gridded
location.

FIGURE 9. Confusion matrix of localization in the vehicle by using DT.

simple detection task is not enough because of the large area
and the uncertainty of the subject’s location, the specific
coordinates of the subject need to be determined. In the
vehicle scenario, the four locations are classified as gridded
locations, while in the classroom, we use the data collected at
the gridded locations for regression. The classification result
on the gridded location at the vehicle scenario is shown in
Table 5.

Among the localization solutions in the vehicle scenario,
both SVM and RFR achieved the highest accuracy with
99.1%. These results infer that the human subject can be
localized on a grid by using PRF. From our experimental
experience, the location of the human signature can make
a big difference in the PRF spectrum. Compared with the
authentication and activity recognition tasks, the subject’s
distance from the SDR location has a more intuitive rep-
resentation on the PRF spectrum. Five SDR receivers are
used in the experiment, which can effectively eliminate the
influence of RSSI that does not contain phase information.
Therefore, obtaining very high accuracy in localization tasks
is our expectation. However, the low accuracy of the DT
classifier on the localization task gets our attention. The
confusion matrices of the DT are shown in 0, which shows
that only position 1 is mislabeled between the front and back
passenger (Fig. 7).

Fig. 9 shows that two test samples of human occupancy
position 3 are classified into position 1. We also analyzed
confusion matrices for other classifiers. Some samples of
position 1 and position 3 could be misclassified. Since posi-
tion 1 is directly in front of position 3, our sitting posture is
not strictly fixed during the data collection. Therefore, there
will be such a phenomenon of misclassification.
In the classroom scenario, PRF spectra of human signa-

tures collected at 20-gridded locations spaced 1.8 m apart
are used as training and test data sets for the GPR regressor.

FIGURE 10. Localization error in the classroom on the coordinate level by using
GPR.

The regression task implemented by GPR is able to demon-
strate the capability of the proposed PRF system on precise
localization. In the traditional training and test set splitting
method, each coordinate location is divided into the training
set and test set by 70% and 30%, respectively. Compared
with traditional methods, we use 17 out of the 20 grid-
ded locations for the training set and the remaining three
locations for the test set. The proposed SHAPR method is
more meaningful in localization tasks, as it is beneficial to
verify that the movement of human signatures in space pro-
duces smooth changes in the PRF spectrum. This is crucial
because the localization capability of the GPR regressor for
precise coordinates is only possible under the premise that
the PRF spectrum changes smoothly. Based on our experi-
ence and assumptions, the PRF spectrum will only change
very slightly due to the environment when the subject is
in the same location. Due to the possible overfitting of the
model, the possibility of obtaining high accuracy on the test
dataset at the same location is very high, and such results are
inaccurate. Therefore, independent and noninterfering data
collection for training and testing gridded locations can ver-
ify the performance of the GPR model. Moreover, it helps to
show GPR model predictions of the subject location at ran-
dom locations. The predicted locations and actual positions
are shown in Fig. 10.
In Fig. 10, the blue dots represent the locations of the

training set. The red dots represent the original location of
the test point. The green dots represent the predicted location
based on the spectrum obtained on the blue dots through the
GPR model. A set of red and green dots connected by each
arrow indicates each set of original and predicted locations.
The average residual of all test points after modeling is cal-
culated using the Euclidean distance between green dots and
red dots. The range of the average residual is about 0.8 m.
When we increase the number of training set points and
decrease the number of testing points, the residual will signif-
icantly decrease. Therefore, PRF could be utilized to locate
a human subject at the coordinate level. Thus, the SHAPR
solution can predict the coordinates of an unknown location
by GPR based on the PRF and coordinates of the known
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TABLE 6. Human activity recognition accuracy for five ML models in the laboratory.

FIGURE 11. Confusion matrix of activity recognition in the laboratory by using the
RNN.

location and the PRF of the unknown location. Furthermore,
if we collect data on more locations for modeling, the
location predictions will be better.

D. ACTIVITY RECOGNITION
Laboratory Scenario: In this task, two human subjects
are invited to conduct eight activities. Five MLs are uti-
lized to classify eight typical activities, which include
using Smartphone, Sitting, Watching TV, Walking, Standing,
Exercising, writing on the Board, and simulating Falls.
The activity recognition classification results are shown in
Table 6.

Activity recognition is a particular task because dynamic
activities have temporal continuity and location uncertainty
and variability compared to static authentication and local-
ization. The subject’s dynamic activity continuously affects
the PRF spectrum. Considering that the sampling time of
each PRF spectral sample is about 8 s, the dynamic activ-
ity of the subjects continuously affects the average power
at different frequencies. Since the active tasks are set to
tasks, such as Walking and Exercise, the location of the
subjects is also uncertain and varied. Therefore, dynamic
activity recognition continuously affects the average power
change over frequency in time and space, which are both a
challenge and a feature for activity recognition, because ML
algorithms can easily classify walking and standing activities.
RFR verifies our conjecture with 99.1% accuracy in classify-
ing activities, and it can easily classify these eight activities.
The results of RNN for activity classification are more of
our concern due to its ability to handle temporally continu-
ous data. The confusion matrix of using RNN is shown in
Fig. 11.
Fig. 11 shows errors in activity classification, such as the

RNN model misclassifying three Walking to Exercise. The

RNN model is originally expected to outperform traditional
ML algorithms. RNN models have more weights, biases, and
hyperparameters than traditional ML to extract better and fit
data features. However, from the experimental results, tradi-
tional ML, especially RFR, has higher accuracy than RNN.
RNNs generally have a strong ability to deal with continu-
ous data because of their internal long short-term memory
(LSTM) modules which require large data sets to fine-tune
the models. For our experiments, the RNN does not per-
form well in authentication and localization tasks. Possible
reasons are that the authentication and localization tasks are
static classification tasks and the PRF spectrum is not con-
tinuous data. The PRF spectrum has independent average
power at each frequency, and there is no specific correlation
between each frequency. According to the PRF spectrum in
Fig. 3, we notice that the PRF spectrum does not change
regularly, and only the changes between adjacent frequencies
are not very drastic but also there is not overall upward or
downward trend. In the dynamic activity recognition task,
however, there is a temporal correlation between subjects’
activities, which causes the average power corresponding to
each frequency in the PRF spectrum to rise or fall regularly.
This regular change may be due to subjects approaching or
moving away from the SDR antenna at similar speeds, etc.,
which may regularly affect the PRF spectrum. However, the
classification accuracy of RFR is higher than that of RNN,
indicating that this regular change has less impact on the
overall PRF spectrum, so the ML algorithm of RFR can
better process PRF data.

E. MEASUREMENT ERRORS AND REPEATABILITY
To evaluate the error and stability of our system, we
conducted repeated experiments and computed the stan-
dard deviation, thereby quantifying the repeatability of our
system. Consider, for instance, the human coordinate-level
localization. Data was collected at the positions depicted in
Fig. 6 within a classroom setting. This data collection at spe-
cific coordinate points was repeated for a total of five trials.
The average Euclidean distance d between the estimated and
true coordinates of the test points was deemed the localiza-
tion error. This process was iterated five times, calculating
the localization error for each repetition. Subsequently, the
standard deviation across these five measurements was ascer-
tained. As demonstrated in Fig. 12, the estimated points from
the five repeatability experiments are closely clustered, with a
standard deviation for the localization error being σ = 0.049.
This indicates that the repeatability of the SHAPR system is
commendable, instilling high confidence in its performance.

F. ABLATION STUDY FOR MULTIRECEIVERS
We seek to establish a balance between the number of
receivers and accuracy to prevent unnecessary wastage
of devices and data redundancy. Therefore, we con-
ducted an ablation study involving multiple receivers to
explore the impact of varying numbers of sensors on the
SHAPR system’s performance, as illustrated in Fig. 13. We
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FIGURE 12. Repeatability experiment showcasing five samplings and estimation for
the same point.

employ different quantities of receivers to investigate the
performance of the activity classification task, specifically
the receivers A, B, C, D, and E as depicted in Fig. 4. Here,
five receivers are placed in distinct relative positions sur-
rounding the subject. For one receiver (i.e., the deep blue
histogram), it signifies the accuracy of the five individual
receivers A, B, C, D, and E. The upper limit of the error
bar corresponds to the highest and lowest accuracies among
these five receivers, respectively. Similarly, for two receivers
(i.e., the turquoise histogram), it represents the accuracy of
random combinations of two receivers, such as AB, AC,
DE, etc. For five receivers (i.e., the orange histogram), it
symbolizes the concurrent accuracy of all five sensors; in
the experiments with five receivers, we gather data through
repeatability tests to ascertain the distribution of performance
errors, where the error bars convey the accuracy variance
across these repeat experiments.
The results presented in Fig. 13 indicate that performance

varies with the number of receivers. As the number of
receivers increases, the classification accuracy of the PRF
system improves, the error variance decreases, and the stabil-
ity enhances. This enhancement is attributed to the increase
in the number of samples, which allows the classifier to rec-
ognize more subtle human signature features. Furthermore,
receivers with different spatial distributions enable more
accurate modeling of human distance behavior. The impact
of the number of PRF receivers is similar to that of WiFi
access points. However, adding more receivers can lead to
several issues, including increased system costs and unnec-
essary resource consumption. Moreover, deploying receivers
optimally, ensuring synchronization among receivers, and
adapting the system to the specific scenario are also impor-
tant considerations. Therefore, the proposed SHAPR system
utilizes five receivers as part of its SDR device configura-
tion, maximizing performance while minimizing the requisite
number of SDR devices.
When we adopt data from one device, RNN accuracy

is found to be substantially lower. This can potentially be
attributed to the underfitting or overfitting of RNNs due to
inadequate training data. RNNs require more samples than
conventional ML techniques. This can be largely attributed

FIGURE 13. Comparison of the number of antennas and the accuracy of human
activity recognition.

to the relatively fewer parameters associated with traditional
ML algorithms. This strength of traditional ML algorithms,
requiring relatively less data, especially when human-centric
datasets pose challenges in collection, is noteworthy. The
increase in the number of devices inherently leads to a cor-
responding rise in sample quantity. For instance, a single
receiver yields a feature count of 101, while deploying five
receivers boosts this count to 505. The results illustrate that
when relying solely on data from a single device, accuracy
is suboptimal. However, with data aggregated from three
devices, we witness an accuracy exceeding 90%. This sug-
gests that data derived from five devices suffices to meet the
system requirements.

VI. CONCLUSION
This article presents the SHAPR by monitoring the PRF
spectrum. Five ML algorithms are performed to realize
authentication, localization, and activity recognition. In lab-
oratory and living room scenarios, the human subject’s
authentication accuracies are 95.6% and 98.7% by using
RFR, verifying that different human subjects can generate
different signatures on the PRF spectrum. The high-accuracy
authentication method could be used to authorize people
who match the ID database signature. The SHAPR human
localization method utilizes a grid level and coordinate
level. Human subjects occupying location classification tasks
can reach 99.1% accuracy in the vehicle scenario. For the
coordinate-level localization, the average error is 0.8 m,
which clarified humans at different locations can produce
different alterations on the PRF spectrum. In the activity’s
recognition classification task, eight activities could be clas-
sified with 99.1% accuracy by using the RFR, which means
different human postures can also generate different signa-
tures on the PRF spectrum. Therefore, our research not only
enlarged the applications of the PRF spectrum monitoring
but also found a novel biometric modality and utilized this
modality feature to realize human sensing with comparable
accuracy.
Future work is directed toward developing a large-scale

multitasking system for multiperson authentication and local-
ization based on the current capabilities of the SHAPR
system. Our experiments have demonstrated the proposed
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system’s ability in authentication, localization, and activ-
ity recognition; however, as a preliminary experiment, it
required a scenario with only a single subject. Thus, we
propose to sequentially develop a multimodule system for
multiperson authentication and localization by leveraging the
functionalities of SHAPR. A feasible approach would be
for the SHAPR system to first count the number of peo-
ple in the scenario, then identify each person’s PRF spectral
signature for authentication, and subsequently locate these
spectral signatures to achieve multiperson localization. In
addition to future application prospects, a robust frequency
band configuration algorithm for the SHAPR system is also
part of the future work, given SHAPR’s sensitivity to PRF
spectra. If significant changes occur in the spectra on our
chosen frequency band, the accuracy of human sensing may
be greatly affected. Hence, the act of sampling across differ-
ent frequency bands and the subsequent fusion represents a
potential approach to alleviate or adapt to spectral variations,
thereby enhancing the robustness of our system.
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