

FedMFS: Federated Multimodal Fusion Learning with Selective Modality Communication

Liangqi Yuan, Dong-Jun Han, Vishnu Pandi Chellapandi, Stanislaw H. Zak, and Christopher G. Brinton

June 10, 2024

Federated Learning

• Goal: Train either "a global model" or "personalized models" via collaboration

 \rightarrow Communication burden issue, data heterogeneity issue, security and privacy issues etc.

 \rightarrow Active area in both communications/networking and ML communities

[SPM'20] "Federated learning: Challenges, methods, and future directions," IEEE Signal Processing Magazine, 2020.

Federated Learning

• Goal: Train either "a global model" or "personalized models" via collaboration

 \rightarrow Communication burden issue, data heterogeneity issue, security and privacy issues etc.

 \rightarrow Active area in both communications/networking and ML communities

 \rightarrow Most existing works consider a single-modality scenario (with a single type of data) ³

Motivation: Scenarios with Multiple Modalities

- In many practical settings, we need to make decisions based on multiple types of data
- Applications
 - Autonomous vehicles: Multiple types of sensors such as Cameras, LiDAR, and Radar
 - Wearable sensors: Multiple types of devices such as Smart Watches and Fitness Bands

Wearable sensors

Motivation: Scenarios with Multiple Modalities

- In many practical settings, we need to make decisions based on multiple types of data
- Applications
 - Autonomous vehicles: Multiple types of sensors such as Cameras, LiDAR, and Radar
 - Wearable sensors: Multiple types of devices such as Smart Watches and Fitness Bands

Background: Multi-Modal Learning

- Multi-modal learning has been extensively studied in centralized settings
- One common approach is to use multiple models to process different types of data and combine them for decisioning

Multi-modal learning

[SPM'17] "Deep multimodal learning: A survey on recent advances and trends," IEEE Signal Processing Magazine, 2017.

Our Focus: Multi-Modal Federated Learning

- Goal: Federated learning over distributed clients that have multiple modalities
- New challenges arise!
 - Heterogeneous clients may lack certain modalities: Some vehicles are not equipped with LiDAR, and some individuals with wearable sensors prefer not to wear watches
 - Communication burden becomes more significant: Each client needs to upload multiple models to the server

Multi-modal federated learning scenario

Overview

Existing Multimodal Federated Learning works:

Consider a scenario where all modalities are available The entire model is uploaded to the server for aggregation.

Overview

Our Approach:

Due to the decision-level fusion strategy, we allow clients to handle missing modalities

We significantly reduce the communication overhead through selective modality communication ⁹

Overview

Selective modality communication

Selective Modality Communication

FedMSF: <u>Fed</u>erated <u>M</u>ulti-Modal <u>F</u>usion Learning with <u>S</u>elective Modality Communication

Performance-Communication Trade-Off

• Performance

Communication

- Modality model size

Priority measure of modality k = $\alpha_s \times \text{Shapley}_k + \alpha_c \times \text{Model size}_k$

- Weight of Shapley value α_s
- Weight of modality model size α_c

Each client uploads modality models based on top-y priority

- Shapley value (measures the impact of each modality)

Xsens Awinda body tracking

Manus Gloves finger tracking

Custom tactile sensors

Myo Armband muscle sensor

Pupil Labs eye tracking and first-person video

Classification of 20 classes in Kitchen activity

Slice Bread

Spread Jelly

Manipulations

Open/Close a Jar

TABLE I **DESCRIPTION OF ACTIONSENSE DATASET**

Sensor	Туре	Position	Feature	Heterogeneity (Missing Data)
Eye Tracking	Position	Head	2	
Муо	EMG	Left Arm	8	
Муо	EMG	Right Arm	8	
Tactile Glove	Pressure	Left Hand	32 imes 32	S06 – S09 ¹
Tactile Glove	Pressure	Right Hand	32 imes 32	$S06 - S09^{-1}$
Xsens	Rotation	Body	22×3	

¹ S06 – S09 refers to subjects 06 through 09.

J. DelPreto, C. Liu, Y. Luo, M. Foshey, Y. Li, A. Torralba, W. Matusik, and D. Rus, "Actionsense: A multimodal dataset and recording framework for human activities using wearable sensors in a kitchen environment," Advances in Neural Information Processing Systems, vol. 35, pp. 13 800-13 813, 2022.

12

Experimental Results

- Findings:
 - Our FedMFS reduces the communication overhead by over 4x.
 - Aggregation of all modality models is not always necessary.
 - Different data modalities contribute distinctively to the accuracy.

Extended Version

• **New metric**, *recency*, to prevent overemphasis on certain modalities and maintain generalization.

• **Client selection**, optimizing communication overhead in conjunction with modality selection.

CLIENT

CLIENT

a

Conclusion

- Federated learning in a multi-modal scenario
- Consider missing modalities
- Selective modality communication to save communication burden while achieving a satisfactory accuracy

Thank you!

Liangqi Yuan - *liangqiy@purdue.edu* Dong-Jun Han - *han762@purdue.edu* Vishnu Pandi Chellapandi - *cvp@purdue.edu* Stanislaw H. Zak - *zak@purdue.edu* Christopher G. Brinton - *cgb@purdue.edu*

Conference Version

Extended Version Demo Available!