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Federated Learning
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* Goal: Train either “a global model” or “personalized models” via collaboration
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** Figure from SPM’20

- Communication burden issue, data heterogeneity issue, security and privacy issues etc.

— Active area in both communications/networking and ML communities

[SPM’20] “Federated learning: Challenges, methods, and future directions,” IEEE Signal Processing Magazine, 2020.
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- Communication burden issue, data heterogeneity issue, security and privacy issues etc.
— Active area in both communications/networking and ML communities

- Most existing works consider a single-modality scenario (with a single type of data) 3




Motivation: Scenarios with Multiple Modalities

* In many practical settings, we need to make decisions based on multiple types of data

* Applications
* Autonomous vehicles: Multiple types of sensors such as Cameras, LiDAR, and Radar
* Wearable sensors: Multiple types of devices such as Smart Watches and Fitness Bands
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Background: Multi-Modal Learning

 Multi-modal learning has been extensively studied in centralized settings
 One common approach is to use multiple models to process different types of data and
combine them for decisioning
** Figure from SPM’17
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[SPM’17] “Deep multimodal learning: A survey on recent advances and trends,” IEEE Signal Processing Magazine, 2017.



Our Focus: Multi-Modal Federated Learning

* Goal: Federated learning over distributed clients that have multiple modalities

* New challenges arise!

* Heterogeneous clients may lack certain modalities: Some vehicles are not equipped with
LiDAR, and some individuals with wearable sensors prefer not to wear watches

* Communication burden becomes more significant: Each client needs to upload multiple
models to the server
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Existing Multimodal Federated Learning works:
Consider a scenario where all modalities are available
The entire model is uploaded to the server for aggregation.



Overview
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Our Approach:
Due to the decision-level fusion strategy, we allow clients to handle missing modalities

We significantly reduce the communication overhead through selective modality communication ¢
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Selective Modality Communication

 FedMSF: Federated Multi-Modal Fusion Learning with Selective Modality Communication
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Experimental Results

* Findings:
* Our FedMFS reduces the communication overhead by over 4x.
* Aggregation of all modality models is not always necessary.

* Different data modalities contribute distinctively to the accuracy.
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Extended Version

 New metric, recency, to prevent overemphasis on

certain modalities and maintain generalization.
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Conclusion

* Federated learning in a multi-modal scenario

* Consider missing modalities

e Selective modality communication to save communication burden while achieving a satisfactory accuracy
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Thank youl!

Liangqi Yuan - liangqiy@purdue.edu
Dong-Jun Han - han762@purdue.edu
Vishnu Pandi Chellapandi - cvp@purdue.edu
Stanislaw H. Zak - zak@purdue.edu
Christopher G. Brinton - cgb@purdue.edu
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Demo Available!
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