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Abstract—Machine learning (ML) is widely used for key tasks in
Connected and Automated Vehicles (CAV), including perception,
planning, and control. However, its reliance on vehicular data for
model training presents significant challenges related to in-vehicle
user privacy and communication overhead generated by massive
data volumes. Federated learning (FL) is a decentralized ML ap-
proach that enables multiple vehicles to collaboratively develop
models, broadening learning from various driving environments,
enhancing overall performance, and simultaneously securing local
vehicle data privacy and security. This survey paper presents a
review of the advancements made in the application of FL for CAV
(FL4CAVY). First, centralized and decentralized frameworks of FL.
are analyzed, highlighting their key characteristics and method-
ologies. Second, diverse data sources, models, and data security
techniques relevant to FL in CAVs are reviewed, emphasizing their
significance in ensuring privacy and confidentiality. Third, specific
applications of FL are explored, providing insight into the base
models and datasets employed for each application. Finally, existing
challenges for FL4CAY are listed and potential directions for future
investigation to further enhance the effectiveness and efficiency of
FL in the context of CAV are discussed.

Index Terms—Federated learning, connected and automated
vehicles, distributed computing, privacy protection, data security.

1. INTRODUCTION

ONNECTED and automated vehicles (CAV) are the key
C to future intelligent transportation systems (ITS) that en-
compass both ground and air transportation [1], [2], [3], [4], [5],
[6], [71, [8], [9]. With the advent of Big Data, the Internet of
Things (IoT), edge computing, and intelligent systems, CAVs
have the potential to improve the overall transportation system
by reducing traffic accidents, congestion, and pollution [10],
[11], [12], [13]. CAVs integrate both Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) communication capabilities,
facilitating an enhanced perception of the environment beyond
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the direct line of sight [14], [15], [16]. This involves interac-
tion with other vehicles, traffic signals, pedestrians, and other
elements of the transportation ecosystem. Furthermore, CAVs
are designed to assume control of driving tasks by the human
operator under certain conditions, using a variety of sensors
and sophisticated machine learning (ML) algorithms to achieve
autonomous operation.

Currently, CAVs are generating a tremendous amount of raw
data, between 20 and 40 TB per day, per vehicle . The various
sources of these data include engine components, electronic con-
trol units (ECU), perception sensors, and vehicle-to-everything
(V2X) communications. This large amount of data is sent to
other vehicles, roadside infrastructures, or the cloud, continu-
ously or periodically for monitoring, prognostics, diagnostics,
and connectivity features [17]. This flow of data has driven
the flourishing deployment and application of ML in CAVs,
including areas such as Advanced Driver-Assistance Systems
(ADAS) [18], automated driving [19], ITS [20], and sustainable
development [21].

A. Motivation

Due to the large amount of data required to train ML models,
concerns have been raised about data security in terms of the
legitimacy of data collection, data misuse, and privacy breaches.
Data collected by various sensors in CAVs, are also considered
private and are subject to stringent privacy protection regulations
in different regions. One such example is the General Data
Protection Regulation (GDPR) in the European Union [22],
which imposes strict requirements and guidelines on the han-
dling and processing of personal data to ensure individuals’
privacy rights are protected. Even with the development of
advanced ML techniques and vehicle connectivity, it has not
been feasible to have a secure framework to collect data from
every vehicle and train an ML model. These limitations led to
the development of a new ML paradigm known as Federated
Learning (FL) [23], [24]. The term Federated Learning (FL) has
been coined by Google [25]. FL was initially used for mobile
keyboard prediction in Gboard [26] to allow multiple mobile
phones to cooperatively and securely train an ML model. FL has
been extensively applied in various fields such as industry [27],
[28], [29], energy [30], [31], healthcare [32], [33], and more.
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Fig. 1. Roadmap of this survey paper.

In FL, edge devices/clients only send the gradients or the
learnable parameters to cloud servers rather than sending mas-
sive local datasets in a centralized learning framework. Cloud
servers perform a secure aggregation of the received gradi-
ents/weights and update the global model parameters that are
transmitted back to clients/edge devices [34]. This procedure,
known as a communication round, continues iteratively until the
convergence criteria are met in the global model optimization.
The key advantage of FL is reducing the strain on the network
while also preserving the privacy of the local data. FL is a
potential candidate that can utilize the data available from each
CAV and develop a robust ML model.

Despite the benefits of V2X communications among CAVs,
the invasion of privacy, accuracy, effectiveness, and commu-
nication resources is an essential concern to be addressed. FL
frameworks have received attention for their natural ability to
preserve privacy by transmitting only model data between the
server and its clients without including local vehicle data. In
particular, the model data packets are smaller than the user
data, thus saving the consumption of communication resources.
Similarly, FL frameworks distribute training tasks to each client,
and the server does not perform training but only aggregates,
which can reduce the computational demand on the server and
improves training efficiency. Recently, there have also been
efforts to train a decentralized FL that allows multiple vehi-
cles to collaboratively train a model without needing a central
server [35], [36]. In our first survey of FL for CAV (FL4CAV)
presented in [37], we emphasized applications and explored
foundational challenges in the subject. Building upon that con-
ference version, this extended journal paper further delves into
the underlying methodologies, provides a more comprehensive
review of recent developments, and introduces novel insights and
evaluations, thereby presenting a more exhaustive and nuanced
understanding of the field.

B. Paper Organization

In this paper, we provide a survey of FLACAYV, including
deployment of various FL frameworks on CAVs, data modal-
ities and security, diverse applications, and key challenges. The
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organization of this survey is shown in Fig. 1. The following
topics are covered in this survey:

® A systematic review of FL algorithms is conducted, specif-
ically focusing on their deployment in CAVs. Additionally,
we examine the integration of ML models within the FL.
framework for CAV applications.
Data modalities and data security considerations in CAVs
are summarized, highlighting the diverse range of multi-
modal data generated by various sensors.
Critical applications of FL4CAV are explored, such as
driver monitoring, steering wheel angle prediction, vehi-
cle trajectory prediction, object detection, motion control
application, traffic flow prediction, and V2X communica-
tions.
Current challenges and future research directions of
FLACAV are highlighted, such as performance, safety,
fairness, applicability, and scalability. A comparison of our
survey with other related surveys can be found in Table I.

The remainder of this survey is organized as follows. In
Section II, we describe the two main FL frameworks along
with their algorithms. In Section III, we discuss various data
modalities, ML methods used in FLACAV applications, and FL
data security in CAVs. Section IV reviews various applications
of FL in CAVs. The multi-modal data, algorithms, and datasets
used in the relevant literature are also summarized. Challenges
and potential research areas are discussed in Section V. In
Section VI, we present conclusions of this survey.

II. FEDERATED LEARNING METHODS

In this section, we describe the FL frameworks in terms of two
categories: centralized FL and decentralized FL. An illustration
of the categories is shown in Fig. 2. In addition, we provide an
overview of the ML techniques that are commonly used as base
models on local devices during the FL process. The steps of this
process can be described as:

1) Global Model Distribution: The edge server disseminates

the global model parameters to K vehicles.

2) Model Update Using Local Data: Each vehicle indepen-

dently trains the ML model using its own local data.
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TABLE I
COMPARISON OF RELATED SURVEYS OF FEDERATED LEARNING FOR CONNECTED AND AUTOMATED VEHICLES

Survey Time | Focused topic in FL CFL & DFL | Vehicle Data | Vehicle Highlights
Modality Application
Du et al. [38 2020 Vehicular IoT X X X
u ef al. [38) cediar o o First survey of FL in vehicular IoT
Ji t al. [39 2020 Smart cit X X X
iang et al. [39] fart ety o Opportunities of FL in the context of smart cities, such
as interactions between CAVs and an urban sensing
system.
Savazzi et al. [40] 2021 Automated industrial v X X .. . . .
o Opportunities of FL in next-generation connected indus-
trial systems, including robotics, vehicles, and drones
N t al. [41 2021 ToT 4 X X
guyen et al. [41] © e FL in IoT applications, such as intelligent healthcare,
transportation, city, unmanned aerial vehicles (UAV),
and industrial
Javed et al. [42 2022 Vehicular IoT Network | X X X
aved et al. [42] eieular fo Retwor o Integrating blockchain and FL for vehicular ToT net-
work.
Yi tal. [43 2023 Decentralized FL v
uan ef al. [43] ccentraiize X u e Taxonomies and variants of DFL
e Analysis and state-of-the-art developments in different
network topologies for DFL
This pa 2023 FL for CAV v v v
'S paper or o Advantages and disadvantages of CFL and DFL in
CAV and state-of-the-art deployments.
o Diverse data modalities and security in CAV
o Facilitating 8 vehicle applications through FL
o Challenges and future research directions of FL for
CAV across 4 major categories and 11 subcategories.
v Yes, X No.
TABLE II
COMPARISON OF MACHINE LEARNING APPROACHES IN CONNECTED AND AUTOMATED VEHICLES
Features Edge Learning Centralized Learning Centralized Decentralized

(On-Vehicle only)

(On-Server only)

Federated Learning

Federated Learning

Model training

Local vehicle

Central server

Local vehicle training and
central server aggregation

Local vehicle training and
aggregation

Model applicability

Personalized model

Single global model

Single global model but can
be personalized

Global models and personal-
ized models

Privacy protection L4 X v

Learning efficiency v v v
Performance on heterogeneous/anomaly data v/ v v/
Communication (Data transmission) requirement v/ X X
Training data volume X L4 v v
Current research progress v/ L4 X
Compatibility with CAV v X v 44

vV Very high, v/ high, * average, X low.

Secure aggregation

Global model

(a) Centralized FL for CAVs

(b) Decentralized FL for CAVs

Fig. 2. Illustration of (a) centralized and (b) decentralized federated learning for connected and automated vehicles.
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TABLE III
LITERATURE OVERVIEW OF FL FOR CAV ALGORITHMS

Literature Time | CFL | DFL | Base Model FL Algorithm
Doomra et al. [133] 2020 | V LSTM Averaging
Liu et al. [134] 2020 v GRU Averaging (randomly client selection aggregation.)
Zhang et al. [135] 2021 v Two-stream CNN Averaging
Aparna et al. [136] 2021 4 CNN Averaging
Rjoub et al. [137] 2021 v YOLO Averaging
Kong et al. [138] 2021 v MLP Averaging
Zhou et al. [139] 2021 v CNN Averaging (hierarchical)
Saputra et al. [140] 2021 v/ MLP Averaging (optimal economic client selection aggregation)
Barbieri et al. [141] 2021 v PointNet Mesh topology
Zeng et al. [46] 2022 4 MLP Averaging
Stergiou et al. [66] 2022 v LeNet-5 Averaging
Fantauzzo et al. [67] 2022 v BiSeNet V2 Averaging
Elbiret al. [142] 2022 | / U-Net Averaging (hybrid federated and centralized learning architecture)
Han et al. [143] 2022 | V/ LSTM Averaging
Fu et al. [82] 2022 | V/ RL Averaging (reputation, quality, and overhead client selection aggregation)
Doshi et al. [70] 2022 v ResNet-8 & 56 Knowledge Distillation (FedGKT)
Sepasgozar et al. [144] | 2022 v LSTM Averaging
Yang et al. [145] 2022 v ResNet-18 Averaging (partial model weight update)
Zhou et al. [146] 2022 4 Transformer Averaging (spatial and temporal client selection aggregation)
Yuan et al. [71] 2023 4 ResNet-34 Averaging (selective aggregation; meta-learning personalization)
Yuan et al. [147] 2023 v ResNet-34 Gossip protocol
Zhao et al. [72] 2023 v CNN Averaging (hierarchical)
Du et al. [148] 2023 v LSTM Averaging (hierarchical)
Parekh ef al. [149] 2023 v CNN Averaging
Wang et al. [150] 2023 v/ LSTM Averaging
This training process typically adopts a simple Stochastic ~ as
Gradient Descent (SGD) algorithm. The computational K
. . . . 1
infrastructure is usually hmlted.. . min | f(z) = — Z fila) ], (1)
3) Local Update Upload: After training the model, each ve- z€Rd K pa

hicle applies privacy-preserving techniques such as differ-
ential privacy (introduces artificial noise to the parameters)
and then uploads/communicates the model parameters to
the selected central server (Centralized Federated Learn-
ing, i.e., CFL) or other vehicles (Decentralized Federated
Learning, i.e., DFL).

4) Aggregation of Vehicle Updates: The server securely ag-
gregates the parameters uploaded from K vehicles to
obtain the global model. Furthermore, it tests the model’s
performance.

A. Centralized Federated Learning

In this section, we review two major aggregation methods in
the centralized framework, namely averaging and a more recent
technique called knowledge distillation.

1) Averaging: Most of the existing literature uses the Feder-
ated Averaging (FedAvg) algorithm [25] for the FL aggregation
process on the server—see Table III. FedAvg applies SGD op-
timization to local vehicles and performs a weighted averaging
of the weights of the vehicles on the central server. FedAvg
performs multiple local gradient updates before sending the
parameters to the server, reducing the number of communication
rounds. For FL4CAV, data on each CAV are dynamically updated
at each communication round.

A typical FL setup has K vehicles that have their own local
data sets and the ability to perform simple local optimization. At
the central server, the optimization problem can be represented

where f; : R? — R for i € {1,..., K} is the local objective
function of the ith vehicle. The local objective function of the
ith vehicle can have the form,

fi(zi) = B¢, [€(4, )], 2

where &; represents the data that have been sampled from the
local vehicle data D; for the i*" vehicle. The expectation oper-
ator, |, is acting on the local objective function, £(z;, &;), with
respect to a data sample, &;, drawn from the vehicle data, D;.
The function ¢(x;,&;) is the loss function evaluated for each
vehicle, x;, and data sample, &;. Here, x; € R4 represents the
model parameters of vehicle ¢, and X & R4*K s the matrix
formed using these parameter vectors. The learning process
is performed to find a minimizer of the objective function,
x; = x* = arg mingcpa f(x).

The data obtained from CAVs are typically non-independent
and non-identically distributed (non-IID). FedAvg faces chal-
lenges in realistic heterogeneous data settings, as a single global
model may not perform well for individual vehicles, and mul-
tiple local updates can cause the updates to deviate from the
global objective [44]. Several variants of FedAvg have been
proposed to address the challenges encountered by FL, such
as data heterogeneity, client drift, local vehicle data imbalance,
communication latency, and computation capabilities. FedProx
algorithm, FedAvg with a proximal term, has been proposed to
improve the convergence and reduce communication cost [45].
Dynamic Federated Proximal [46] algorithm (DFP) is an exten-
sion of FedProx that could effectively deal with non-IID data
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Algorithm 1: CFL for Dynamic Data Updating CAV.
Input: Vehicle set V, communication rounds 7, isolated
time-varying local dataset £ = {&(,t) ;v € V}, local
epochs E, learning rate {n; };_, loss function f
Output: Aggregated global model 6
1:  For each vehicle v € V initialize model: 01(,0) e R4
2: fort=0,...,T—1do
3 Perform local SGD for vehicle v € V in parallel do
4: Sample §1(,t), compute gf,t) = %fv(&(,t), ff))
5
6
7

ot gt — 77t97(1t) = SGD (F epochs)
Vehicle sent model 0, to server

end for “
00D ¢ 3y fetm (01F") = Aggregation on
server
o: Server sent model #(*T1) to vehicles
10: end for

11:  Output the aggregated global model # < 6(T)

distribution by dynamically varying the learning rate and regu-
larization coefficient during the learning process. FedAdam [47]
has shown improved convergence and optimization performance
by incorporating ADAM optimization in the FedAvg algorithm.
Improving the performance of the FL model is an ongoing
research activity [48], [49], [50], [51].

2) Knowledge Distillation: In this subsection, we discuss
the integration of knowledge distillation with FL. Federated
Distillation (FD) [52] uses knowledge distillation to transfer
knowledge in a decentralized manner, leading to a significant
reduction in the communication size compared to a traditional
FL. It also has the ability to handle non-IID data samples [53].
Wang etal. [54] proposed a conceptual framework called FD for
CAV (FDCAV), where CAVs share their outputs (e.g., bounding
boxes) with a central server, which computes the average output
from the global model and sends it back to vehicles. The vehicles
then update their local models based on the output of the global
model [54].

Another approach is to deploy a teacher model on the server
and student models on the clients. In this process, client devices
usually train and deploy a smaller, simpler model to mimic the
behavior of a larger, more complex model residing on the server.
It allows for the transfer of knowledge from the larger server
model to the smaller client model, thereby reducing computa-
tional complexity and enhancing efficiency. For example, in Fed-
erated Group Knowledge Transfer (FedGKT) [55], a ResNet-55
or ResNet-109 is deployed on the server, while a ResNet-8 is
utilized on the clients. Similarly, Federated Knowledge Distilla-
tion (FedKD) [56] employs a comparable approach, conducting
experiments on natural language recognition tasks. Knowledge
distillation with FL is particularly beneficial in scenarios where
computational resources or storage capacities are constrained
or where the deployment of larger models is infeasible. CAVs
are prime examples of such application scenarios. The CFL is
summarized in Algorithm 1.

>
o

Fig. 3.

(a) Ring (b) Fully-connected

Ring (left) and fully-connected topology (right)—four vehicles.

B. Decentralized Federated Learning

Inthe CFL paradigm, model parameters (weights or gradients)
are transmitted to a central server, often a Road-Side Unit (RSU),
where the FL server-side aggregation process takes place. On
the contrary, DFL relies on a consensus among the vehicles,
fostering collaboration to collectively update global parameters
without the need for a central server. The DFL algorithm is
shown in Algorithm 2. The scalability of CFL is limited by the
computational capacity of the server, which requires a dedicated
infrastructure. The dependence on a single server introduces a
potential point of failure in the learning process and can lead
to communication congestion between the server and vehicles,
especially when handling a substantial number of vehicles [57].

DFL offers scalability by accommodating a large number of
vehicle clients without relying on a central server, and exhibits
enhanced robustness since the collaborative training among
vehicles can continue even if an individual vehicle becomes
unavailable. DFL relies on the V2X communication module
to send model data directly to other neighboring vehicles for
updates [58], [59].

The primary concept behind the DFL process is to estab-
lish consensus among vehicles by enabling communication
exclusively between adjacent neighbors. This communication
process can be effectively represented by employing a con-
sensus/gossip matrix within a network topology graph. More
precisely, a vehicle ¢« communicates with vehicle j based on a
non-negative weight that represents the connectivity of vehicle
¢ and vehicle j, that is, w;; > 0. The case w;; = 0 indicates
that no communication takes place between ¢ and j. Similarly,
for self-loops, the associated weight is represented by w;; > 0.
Fig. 3 shows examples of two commonly employed network
topologies, namely the ring and the fully connected forthe n = 4
client/vehicle configuration. In the fully connected topology
setting, all vehicles interact with each other, whereas in the
ring topology, vehicles interact only with neighboring vehicles.
These associated weights can be compiled into a matrix of
dimension n x n and can be written as W = [w;;] € [0, 1]"*".
The most standard name for W used in the literature is gossip
or mixing matrix.

The mixing matrix, W = [w;;] € [0, 1]"*™, is anon-negative,
symmetric (W = W) and doubly stochastic, that is, W1 =
1, 1TW = 1T matrix, where 1 is the column of ones. Then, the
consensus operation can be represented as,

o = 3wy 6, 3)

J€(n]
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Algorithm 2: DFL for Dynamic Data Updating CAV.
Input: Vehicle set V, communication rounds 7', isolated
time-varying local dataset £ = {&St) ;v € V}, local
epochs E, learning rate {7, }7_, loss function f, mixing
matrix W
Qutput: Personalized model 6,, for each vehicle v € V
1:  For each vehicle v € V initialize model: 950) c R4
2: fort=0,...,7—1do
3 Perform local SGD for vehicle v € V in parallel do
4: Sample &(,t), compute gf,t) — %fv (91(,”, 55,“)
5
6
7

1

95,t+2) — 91(,” — ntgq(,t) = SGD (F epochs)
1

Vehicle sent model 0£t+ 2) to other vehicles

end for

8: Aggregate models of other vehicles u € V:

1
91(,“1) — > W 91(f+2) = Aggregation on clients
9: end for

10:  Each client deploys a personalized model 6, < 07(JT)

where 6 is the model parameter (weights/gradients).

However, DFL also encounters notable limitations, including
hindered convergence (caused by the heterogeneity of data) and
network latency, and the need to synchronize/arbitrate param-
eters and adapt to dynamic network topologies during vehicle
communications. These challenges arise from the decentralized
nature of the FL framework, which requires efficient mecha-
nisms to address disparities in data distribution and network
connectivity among the participating vehicles [60], [61], [62],
[63], [64].

III. OVERVIEW OF DATA MODALITIES, BASE MACHINE
LEARNING MODELS, AND SECURITIES

The concept of FL4CAV is illustrated in Fig. 2. Each CAV as
a client, undertakes sensing data acquisition, signal processing,
storage, communication, perception, and decision-making. For
sensing data acquisition, a variety of sensors are integrated into
CAVs, including Global Navigation Satellite Systems (GNss),
multi-modal cameras, Radio Detection And Ranging (Radar),
Light Detection And Ranging (LiDAR), and Inertial Measure-
ment Unit (IMU) to capture the vehicle, driver, passenger, and
external information.

CAV tasks are diversified to include tracking the target speed,
prediction of behavior, motion planning, motion control, object
detection, and in-vehicle human monitoring. After training on
ML models with local data, clients send the trained model to the
server. Then, the server shares a generalized model with clients
for perception, prediction, and decision-making purposes. The
FL4CAV framework shows a trend towards multi-modal sensing
data, massively parallel clients, and multi-class tasks.

An overview of the data modalities, the base ML models of
CAVs, and data security is presented next.

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

A. Data Modality

CAVs collect multi-modal data from various sensors to per-
form tasks such as navigation and perception. The impact of
different types of data modalities during the FL process on
sensor fusion is dynamically diverse [65]. The data collected by
sensors depend on the sensor type, the sensor’s range, the accu-
racy/precision of the sensor, sensor placement, and the operating
environment. The operating environment, such as snow, heavy
rain, or fog, can reduce sensor visibility, thereby deteriorating
data quality. These factors lead to variations that can significantly
affect the sensor performance. The performance of the FL model
is directly dependent on the quality of the data collected by the
vehicles. The data resolution, size, and sampling rate obtained
from CAVs are generally heterogeneous, and processing the data
is also a challenging task. In the following, we review the various
data modalities in FL4ACAV applications that are illustrated in
Fig. 4.

1) Image: Images, especially visible RGB images, are one
of the most important data modalities for CAVs. Vision-related
tasks, such as driver monitoring Section IV-A, steering wheel
angle prediction Section Section I'V-B, object detection Section
IV-D, traffic sign recognition [66], and semantic segmenta-
tion [67] use images captured by the camera as the data source.
In most applications, various ML models are trained to achieve
the intended functionality. However, due to its intrusive design,
privacy issues are always a concern for image-based systems,
especially for in-cabin and driver-related applications [68], [69],
[70], [71], [72]. Privacy concerns for visual image-based sys-
tems are addressed by FL since only the model parameters are
transmitted while the user data are kept locally in the vehicle.
Moreover, FL also solves the data transmission problem due to
the large size of images and video data, thus leading to a more
communication-efficient learning framework.

2) Lidar: LiDAR data is vital for automated driving capa-
bilities, which has been used for object detection tasks [73],
[74] and cooperative perception scenarios [75], [76]. LiDAR
generates 3D point clouds that can detect objects accurately even
under adverse weather conditions, unlike camera data that are
unreliable under similar conditions. However, the dense point
cloud of LiDAR data makes transmission a demanding task. FL
system for LiDAR data can improve learning efficiency and save
communication resources while being able to handle large data
sets.

3) Radar: Radar sensors are used for object detection and
collision avoidance in applications such as automatic emergency
braking, traffic alerts, and adaptive cruise control [77], [78], [79],
[80]. Radars have long operating ranges, good measurement
accuracy, and are operational in varying weather conditions [81].
Radar data provides critical information about the vehicle’s
surroundings, including the position and the speed of other
objects. Similarly to LiDAR, the FL system for Radar can also
improve learning efficiency and save communication resources.

4) Vehicle Status and GNss: Vehicle status data such as
velocity, acceleration, throttle/brake command, vehicle global
position through GNss, and other vehicle parameters are also
an important part of the CAV data modality. These parameters
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are relevant primarily to the vehicle rather than to the external
environment. These data typically reveal sensitive information
about driver locations, habits, and behaviors that could poten-
tially compromise their privacy and security. FL. addresses these
privacy concerns well while utilizing these data to improve
several applications such as collision avoidance [82], vehicle tra-
jectory prediction Section I'V-C, and motion control application
Section IV-E.

B. Base Models in FL4CAV Applications

ML has been widely used to achieve superior performance
in various complex tasks, given the availability of multi-modal
data from in-vehicle sensors. Furthermore, the ML in FL4CAV
shows the feasibility of implementation in real time, which
is required due to the limited computing and communication
resources of vehicle equipment. We next discuss the various
ML architectures that are used as base models in critical tasks of
CAVs.

1) Multilayer Perceptron: A Multilayer Perceptron (MLP),
as a classic ML architecture, consists of multiple layers of fully
connected neurons. It can be applied to various vehicle-related
tasks, including perception, decision-making, and control. MLP
provides a flexible and versatile tool for modeling complex
relationships in vehicle-related data. However, its performance
in specific tasks may be limited due to the computational demand
for large models. Due to their applicability, MLPs are widely
employed in vehicle trajectory prediction (Section IV-C), motion
control (Section IV-E), and traffic flow prediction (Section IV-F).

2) Convolutional Neural Network: Convolutional Neural
Networks (CNNis) are presently one of the most popular architec-
tures in ML. They are known for their excellent performance in
handling image-related tasks. CNN uses convolutional layers to
automatically extract features from images and learn to associate
these features with corresponding labels. CNNs exhibit versatile
performance in performing a wide range of tasks, including,
but not limited to, classification (as exemplified by LeNet [83],
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ResNet [84]), object detection (such as the YOLO [85] frame-
work), and mask generation for semantic segmentation (repre-
sented by models such as U-Net [86], BiSeNet [87]), among oth-
ers. Due to its high efficiency in extracting features from image
data, CNNs are widely applied in various vehicle-related appli-
cations, such as in-vehicle human monitoring (Section IV-A),
steering wheel angle prediction (Section IV-B), object recogni-
tion (Section IV-D).

3) Recurrent Neural Network: Recurrent Neural Networks
(RNNs) excel at extracting spatial relationships in features. They
are specifically designed to capture temporal dependencies in
sequences of data. Some popular RNN architectures include
Long Short-Term Memory (LSTM) [88] and Gated Recurrent
Unit (GRU) [89]. In the context of vehicles, RNNs have found
extensive applications in modeling the motion and behavior of
vehicles, their surroundings, and targets. Using their sensitivity
to time series data, RNNs can effectively capture the dynamics
and temporal patterns in various vehicle-related scenarios, for
example vehicle trajectory prediction (Section IV-C) and traffic
flow prediction (Section I'V-F).

4) Transformer: Transformer [90] architecture and its vari-
ant, Vision Transformer (ViT) [91], have emerged as powerful
alternatives to traditional CNNs and RNNs. The Transformer
architecture, initially introduced for natural language processing
tasks, has shown exceptional performance in various domains,
including computer vision. Transformers take advantage of self-
attention mechanisms to capture global dependencies across the
input sequence or image. This allows them to effectively model
long-range dependencies and contextual relationships, leading
to improved performance in tasks such as image classification,
object detection, and semantic segmentation. Transformers’
ability to capture global context and long-range dependencies
makes them well-suited for various tasks in the automotive
domain [92]. Transformers and ViTs have attracted substantial
attention in the fields of FL [93] and CAV [94] due to their ability
to effectively capture global information. Transformers and ViTs
have a potential for a wide range of vehicular applications
(Section IV).
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5) Generative Network: Generative networks form images
based on input data, such as mask labels and super-resolution.
These networks, also known as Generative Adversarial Net-
works (GANSs) [95] or Variational Auto-Encoders (VAEs) [96],
exhibit a distinctive ability to generate high-quality and realistic
images. Generative networks have attracted attention in both
the FL [97] and CAV [98] domains. However, there is still no
unified framework that incorporates all three technologies. With
the extensive application of generative networks in CAV, com-
bined with FL’s enhancement of privacy protection and learning
efficiency, they have a potential for various applications. In
vehicular applications, generative networks provide several use
cases, such as vehicle trajectory prediction (Section IV-C). One
application lies in super-resolution, where generative networks
can enhance the resolution and details of low-resolution images,
proving useful for tasks such as license plate recognition and
surveillance systems. Furthermore, generative networks can also
be utilized to augment and improve data sets in training data sets
for vehicle-related tasks.

6) Reinforcement Learning: Reinforcement learning (RL)
demonstrated superior capabilities in solving complex decision-
making problems, surpassing human-level performance in vari-
ous domains [99]. RL improves the abilities of the agent through
interaction with the environment, enabling the agent to learn op-
timal policies through trial and error. RL has been extensively ap-
plied in CAV operations, such as motion control (Section IV-E),
vehicle trajectory prediction (Section IV-C),vehicular CPS (Sec-
tion IV-G), and resource allocation [100], [101], [102].

C. Model Security

Robust and secure privacy preservation techniques are essen-
tial to protect sensitive data during the FL training process for
CAVs. It is demonstrated that the training can still be vulnerable
to various malicious attacks, such as when one or more partici-
pants are compromised, and they could transmit false parameters
to hinder the global model performance. The FL central server is
also prone to attacks that may cause the entire learning process
to collapse [103]. The type of data considered in this section
refers to the model parameters, such as gradients or weights,
that are transmitted to the server/neighboring vehicles. These
are not the raw data used for the training of the local model, as
they are inherently preserved in the FL process.

Homomorphic encryption, differential privacy, and
blockchain-based techniques are notable methods to preserve
privacy in FLACAV. These approaches aim to minimize the
trade-offs between model performance and data privacy,
ensuring data security while enabling effective model
performance. A review of various cyber-security threats
can be found in [104], [105], [106], [107], [108], [109]. We
will next discuss some of the widely used privacy-preserving
techniques.

1) Homomorphic Encryption: Homomorphic Encryption
(HE) is a powerful technique that allows the server to perform
training on encrypted vehicle data without the need for decryp-
tion, thus ensuring data privacy and security. In particular, it
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allows direct computation on encrypted data with decrypted
results [110].

2) Differential Privacy: Differential Privacy (DP) is an ap-
proach that safeguards data privacy by injecting random noise
into the data before transmitting them to the server, preventing
unauthorized extraction of sensitive information while also pre-
serving data ownership and alignment with regulatory compli-
ance. However, there is a trade-off between privacy settings and
accuracy that can impact the performance of the models. DP has
been used in multiple applications of FLACAV for incorporating
data security [111], [112], [113], [114], [115]

3) Secure Multi-Party Computation: Secure Multi-Party
Computation (SMPC) employs cryptographic techniques to en-
crypt and partition the data, enabling collaborative computation
on these data with output results accessible to vehicles. While
SMPC introduces considerable communication overheads, it
excels in preserving data security and privacy. The SMPC
integration framework with FL facilitates model training on
data without exposing model parameters [116], [117]. In an
FL setup, SMPC can substantially encrypt the communication
of model updates. Furthermore, vehicles can apply SMPC for
collaborative intermediate computations, ensuring that even if
the central server is compromised, no meaningful information
can be derived from these computations.

4) Physical Security: In model security enhancement, re-
inforcement at the physical layer emerges is a key approach.
Beyond the security measures required for both the vehicle
and the server, hardware-level security technologies, such as
the Trusted Execution Environment (TEE), offer participants
in FL an isolated, secure, and confidential execution environ-
ment [118]. With the support of TEE, vehicles can process
and store data within a protected environment, iterating and
refining their local models. Similarly, the server, using the
support of TEE, can execute model aggregations in a secure
context.

5) Blockchain: Another disruptive technology gaining trac-
tion in CAV applications is blockchain-based methods, leverag-
ing the decentralized and tamper-resistant nature of blockchain
to improve data integrity, transparency, and security [119], [120],
[121], [122], [123], [124], [125], [126]. Blockchain is a type
of digital ledger technology that securely transfers data in a
decentralized framework. CAVs share their data with the ve-
hicular network and the information is stored on the blockchain.
Blockchain provides a secure, credible, and decentralized ap-
proach to FL, enabling collaborative model training while safe-
guarding data privacy [127]. The system is designed to protect
data privacy and security, as well as to provide greater secu-
rity to the general vehicular networks involved in the learning
process [128]. An analysis of various privacy preservation ap-
proaches is given in [105], [129].

In FLACAV, the model parameters of individual vehicles can
be stored as transactions on the blockchain, ensuring trans-
parency and accountability. This creates trust among the ve-
hicles, as the model updates can be verified. Additionally,
blockchain enables incentive mechanisms through smart con-
tracts, which reward CAVs that contribute high-quality model
updates or share their computational resources for training.
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TABLE IV

LITERATURE OVERVIEW OF FL FOR CAV APPLICATIONS

Literature Time | Data Modality Application Dataset
Doomra etal. [133] 2020 | Time series data of multiple | Turn signal prediction Ford’s Big Data Drive [134]
features from sensors
Liu etal. [134] 2020 | Traffic flow Traffic flow prediction Caltrans Performance Measurement System (PeMS)
dataset [152]
Zhang etal. [135] 2021 RGB image Steering angle prediction Self-collected
Aparna et al. [136] 2021 RGB image Steering angle prediction Self-collected
Rjoub etal. [137] 2021 RGB image and LiDAR Object detection Canadian Adverse Driving Conditions Dataset [153]
Kong etal. [138] 2021 Trajectory data Cooperative positioning Didi Chuxing GAIA Initiative [154]
Zhou etal. [139] 2021 RGB image Traffic sign recognition BelgiumTS [155]
Saputra et al. [140] 2021 Traffic accident data Traffic accident prediction 1.6 million UK traffic accidents [156]
Barbieri etal. [141] 2021 RGB image and Sensor | Object detection nuScenes dataset [157]
data
Zeng et al. [46] 2022 RGB image and trajectory | Target speed tracking Berkeley deep drive [158] and dataset of annotated
data car trajectories [159]
Stergiou et al. [66] 2022 | RGB image Traffic sign recognition German Traffic Sign Recognition Benchmark [160]
Fantauzzo etal. [67] 2022 Multi-modal image Semantic segmentation Cityscapes [161] and IDDA [162]
Elbir etal.[142] 2022 RGB image and LiDAR 3D object detection Lyft Level 5 dataset [163]
Han etal. [143] 2022 Vehicle Status Trajectory prediction US-101 and I-80 data sets of NGSIM [164]
Fu etal. [82] 2022 | Vehicle position, velocity | Collision avoidance Self-generated
and acceleration
Doshi et al. [70] 2022 RGB image Driver activity recognition State Farm Distracted Driver Detection [165] and Al
City Challenge 2022 [166]
Sepasgozar et al. [144] 2022 | Vehicle velocity Traffic flow prediction CRAWDAD Vehicular dataset [167]
Yang etal. [145] 2022 | RGB image Driver activity recognition State Farm Distracted Driver Detection [165] and
YawDD [168]
Zhou et al. [146] 2022 | Trajectory data Trajectory prediction Didi Chuxing GAIA Initiative [154]
Yuan etal. [71] 2023 RGB image Driver activity recognition State Farm Distracted Driver Detection [165] and
Drive&Act [169]
Yuan et al. [147] 2023 RGB image Driver activity recognition State Farm Distracted Driver Detection [165] and
The 7th AI City Challenge [170]
Zhao etal. [72] 2023 RGB image Driver fatigue detection Blinking Video Database [171] and Eyeblink8 [172]
Du etal. [148] 2023 3D head position Lane-change prediction Self-collected
Parekh et al. [149] 2023 RGB image Traffic sign recognition German Traffic Sign Recognition Benchmark [160]
Wang et al. [150] 2023 Vehicle pose Trajectory prediction VeReMi [173]
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These incentives encourage active participation and foster col-
laboration among vehicles [110], [130], [131], [132].

IV. APPLICATIONS OF FLL FOR CAV

In this section, we review some applications of FL.in CAV. The
FLACAV literature, including FL configuration, data modalities,
underlying models, applications, FL algorithm, and datasets,
can be found in Tables III and IV. The strengths of FL, such
as protecting privacy, improving learning efficiency, improving
generalization ability, and reducing communication overhead,
resulted in several FLACAV applications.

A. In-Vehicle Human Monitoring

In-vehicle human monitoring is a critical issue for CAV
and ITS. The in-vehicle human monitoring serves not just the
driver but also extends to the other passenger monitoring in
vehicles [173]. Beyond the application in commercial taxis,
human monitoring becomes particularly critical in large public
transportation modes such as buses, subways, ferries, and more,
where adequate human personnel for service may be lacking.
Consequently, computer-aided monitoring programs can effec-
tively offer superior service quality and protect passenger safety
by handling tasks such as passenger counting, passenger traffic,
detecting elderly falls, and emergency situations such as fires.

FL significantly enhances privacy protection, enriches and
diversifies knowledge, and improves learning efficiency, which

makes it crucial for the application of human monitoring in
the vehicle in the deployment of CAVs. Given the sensitiv-
ity of personal privacy and the rarity of traffic accidents, FL
serves as a valuable tool in these contexts. FL has the potential
to enhance the security of user data onboard while enabling
knowledge transfer and ensuring the generalizability of the
model. However, in human-related applications where data are
highly heterogeneous and personalized, it can be challenging to
balance the generalization ability of the model with the need for
personalization to specific users [174].

Driver monitoring applications, such as distraction detection,
are critical safety features that monitor driver stability and
alertness and warn distracted drivers to apply safety-critical
actions [148], [175], [176], [177], [178]. The computational and
communication efficiency issues in driver activity recognition
are addressed in [70] and a novel framework (FedGKT) was pro-
posed to reduce communication bandwidth and asynchronous
training requirements. Driver privacy may be a greater concern
than steering wheel angle prediction and object recognition,
leading to FL’s ability to be more highlighted in terms of
privacy protection. However, the driver monitoring application
is a highly personalized application where the driver’s behavior
is strongly associated with personal habits, emotions, cultural
background, and even the interpretation of instructions. This
user heterogeneity poses a challenge for FL systems. For human-
related applications, such as driver monitoring, personalized FL
is the dominant solution [71]. A DFL framework was proposed
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in [147] that incorporates a gossip protocol for knowledge
dissemination. This framework not only achieves personalized
models without requiring any additional processing, but also
incorporates a knowledge dissemination technique that signifi-
cantly accelerates the training process.

Passenger monitoring applications are an emerging research
area that involves detecting passengers’ intents to board and
leave and warning of dangerous behavior in public transporta-
tion [179]. However, this field has not yet received much at-
tention due to the lack of available datasets and the difficulty
of monitoring multiple users simultaneously. Nevertheless, the
ability of FL to integrate knowledge about public transportation
and the growing demand for passenger monitoring makes FL a
promising application in this area.

B. Steering Wheel Angle Prediction

The prediction of the angle of the steering wheel has become
a crucial feature of self-driving. The performance of ADAS
features, such as lane keep assist and lane departure warning,
is based on the prediction of the steering angle [180], [181]. The
steering wheel angle prediction is used to estimate the steering
wheel rotation angle based on the input of road images. The
prediction of the steering wheel angle manages the lateral po-
sitioning of the vehicle, even under challenging circumstances,
such as on unpaved and unmarked roads. The steering wheel
angle prediction needs to adapt to different driving and environ-
mental conditions, and thus requires continuous model updates
for high accuracy.

FL achieves the above objectives by enabling several vehicles
to collaborate in learning from new data and updating the model
in arelatively short time. FL offers the benefit of continuous and
collaborative learning, low communication overhead, and data
security that is needed to develop a robust prediction model.

It was demonstrated that FL can collectively train the predic-
tion model while, at the same time, significantly reducing com-
munication costs. The study presented in [135] demonstrated
a significant improvement in edge model quality through the
use of FL in CAV. Specifically, the study involved predicting
steering wheel angles using two modalities of data: images and
optical flow. In [136], the performance of FL and centralized
learning in steering angle prediction was assessed under different
levels of noise and the results were comparable. Furthermore,
this study considered the implications of communication load
and disruptions, providing a comprehensive evaluation of the
systems. This makes FL suitable for applications involving
an increasing number of CAVs, specifically for tasks such as
steering wheel angle prediction.

C. Vehicle Trajectory Prediction

An accurate vehicle trajectory prediction allows CAVs to
perform proper motion planning, as well as anticipate potentially
dangerous behaviors of other vehicles, such as sudden lane
change, skidding, or hard braking, react proactively and prevent
accidents [182], [183], [184], [185], [186]. This is a challenging
task and would require substantial amounts of sensitive vehicle
data to train a model for trajectory prediction.
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FL is a viable solution that provides a collaborative learning
framework with multiple vehicles while keeping sensitive local
data private and secure. FL models are trained on diverse data
from various vehicles operating in different scenarios. This
enhances the generalization of the model and enables vehicles to
handle rare events such as traffic accidents, adverse weather, and
risky behaviors. Additionally, the FL framework supports con-
tinuous learning and model updates, allowing quick adaptation
to dynamic traffic, road conditions, and unfamiliar scenarios.

Trajectory prediction models commonly rely on time series
data that encompass vehicle/passenger position, velocity, and
acceleration. These models leverage the strength of deep neural
networks, mainly RNNs, and Transformers, that have proven
effective in predicting trajectories for various entities, including
vehicles and pedestrians, while also capturing their behavioral
patterns [187]. FL framework has been shown to be effec-
tive in learning spatio-temporal features with the Transformer
model [146] (or the LSTM model [188]) while also protecting
user privacy. FL coupled with One-Class Support Vector Ma-
chine (OC-SVM) has been used to detect anomalous trajectories
at traffic intersections [189]. The reported findings indicate that
the federated approach improves both the overall accuracy of
anomaly detection and the benefit of individual data owners. FL
has been reported to perform similarly to centralized learning
[143], [190], [191]. Centralized learning requires that all data
from the private vehicle be transferred to the central server for
training, whereas the data are kept locally in the vehicle in the
case of FL.

D. Object Recognition

Object recognition is one of the main functions of the visual
perception system of CAVs intended to detect and localize
objects using sensor data such as LiDAR and high-resolution
image/video. These data are large in size and sensitive from
a privacy point of view. As a result, there are limitations to
deploying robust detection models in a traditional centralized
learning approach due to privacy and communication overhead.
These concerns can be mitigated by using an FL-based approach
for CAVs. FL can effectively help CAVs detect various objects
in different driving scenarios, road types, traffic conditions, and
weather types. FL enables the CAV framework to learn effi-
ciently with low communication overhead, which is particularly
advantageous when the volume of data is much larger than the
size of the ML model while also ensuring the privacy of the data.

FL has already been used in computer vision-related tasks,
such as developing safety hazard warning solutions in smart
city applications [192]. The accuracy of object detection models
is generally poor under adverse weather conditions such as
snow and rain. FL frameworks have been shown to improve
detection accuracy [193] and perform better than the centralized
and gossip-decentralized models [137]. Recently, studies have
been carried out to improve the performance of FL. on complex
tasks such as object detection [194]. In [54], it has been shown
that with multistage resource allocation and appropriate vehicle
selection, FL performance improved significantly compared to
traditional centralized learning and baseline FL approaches.
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In [141], a decentralized FL. method is used for object classifi-
cation using LiDAR on CAVs. The parameters of the ML model
(PointNet [195]) are communicated through V2V networks. It
has been experimentally confirmed that FL is highly effective
compared to self-learning approaches.

Another important application of FL is the recognition and
detection of license plates. It is used in ITS for applications
such as traffic safety and violations, traffic monitoring, ille-
gal/overtime parking detection, and parking access authentica-
tion. ML techniques have been shown to be highly efficient in
detecting objects and recognizing license plates [196], [197],
[198], [199]. However, due to the large size of the data from
all vehicles, it is not feasible to train on a real-time edge de-
vice. FL techniques offer numerous advantages to license plate
detection and recognition systems, namely: privacy protection,
enabling collaborative learning, and reduced network bandwidth
requirements. These benefits of using FL contribute to increased
effectiveness and adaptability of such systems in real-world
scenarios [200], [201].

E. Motion Control

The motion controller of the vehicle executes the desired
trajectory by determining the optimal control of the acceleration
pedal position (longitudinal acceleration motion), the steering of
the vehicle (lateral motion) and the brake position (longitudinal
deceleration motion) [202], [203], [204]. FL enables CAVs to
train and optimize controller parameters collaboratively. Some
potential benefits of using FL are enabling CAVs to adapt to
unseen routes/traffic scenarios or operating conditions due to
previous data from other CAVs, acceleration on the ramp, driving
in congested conditions, or challenges associated with higher
vehicle speed [205]. FL enables CAVs to adapt to different driv-
ing scenarios, including unfamiliar roads, cities, and countries.
Furthermore, FL may allow CAVs to adjust driving styles based
on different driving habits, climates, scenarios, and cultural
norms.

FL has been used to dynamically update the controller param-
eters, resulting in improved achievement of the target speed with
enhanced driver comfort and safety [46]. Additionally, FL finds
application in collaborative optimization of control parameters
between multiple vehicles at traffic intersections, resulting in
the avoidance of collisions and improved driving comfort [206],
[207]. In [208], FL is utilized to improve brake performance un-
der different driving conditions and environments by accurately
determining road friction coefficients. This approach ensures the
privacy of the driver while optimizing the braking action. In [46],
an FL framework is proposed to optimize the controller design
for CAVs with variable vehicle participation in the FL training
process.

Reinforcement Learning (RL) approach has been widely ap-
plied for motion control in vehicles due to its ability to train
in complex scenarios with dynamic environments. RL enables
CAVs to learn control policies for the required objectives with
user feedback and sensor measurements [100], [209], [210],
[211],[212]. There are open research problems in motion control
of CAVs that could be addressed by FL such as platooning, lane

change maneuvers, merging on-ramps, signalized, and unsignal-
ized intersections. A review of existing CAV control methods is
provided in [213], [214], [215], while applications of ML to
CAV control are reported in [216], [217], [218], [219], [220],
[221].

FE. Traffic Flow Prediction

Traffic flow prediction is one of the critical components of
an ITS for efficient traffic control, safety, and management. Ac-
curate predictions using historical data to forecast future traffic
conditions can lead to reduced traffic congestion, such as optimal
route recommendation and variable road signal timing. Predict-
ing traffic flow can also allow timely notification to authorities
of occurrences of events, such as accidents and congested road
conditions. ML techniques, such as CNNs and RNNs, have
shown promising results in predicting traffic flow [222], [223],
[224].

FL has been used to predict traffic flow with improved accu-
racy while ensuring privacy and scalability. Sources for model
training include data from CAV, RSUs, and traffic sensors. The
predictions could be in real-time or for future time intervals, and
the model can be trained to predict traffic patterns and improve
the accuracy of traffic flow predictions. FL allows CAVs to
collaboratively learn from their data while addressing privacy
concerns.

In [134], a Gated Recurrent Unit (GRU) network is trained
using FL to predict traffic flow. Experimental evaluations of a
real-world data set show that the FL-based approach can achieve
predictions comparable to those of traditional centralized ap-
proaches. In [225], an FL-based Spatial-Temporal Networks
(FedSTN) algorithm was proposed to predict traffic flow. The al-
gorithm employs various methods like Recurrent Longterm Cap-
ture Network, Attentive Mechanism Federated Network, and
Semantic Capture Network (SCN) to learn spatial-temporal and
semantic information. It is reported that the FedSTN algorithm
outperforms in terms of higher prediction accuracy compared to
existing baselines such as Auto-Regressive Integrated Moving
Average (ARIMA), eXtreme Gradient Boosting (XGBoost),
FedGRU, and ST-ResNet [226]. In [227], a Long-Short-Term
Memory (LSTM) is trained in an FL framework for traffic flow
prediction along with an RL that is used for resource optimiza-
tion. In [144], an FL framework employing LSTM algorithm has
been trained on areal Vehicular Ad hoc NETwork (VANET) data
set based on V2V and V2R communication for the prediction
of network traffic. The above developments show the benefits of
using FL for complex tasks such as traffic flow prediction.

G. Vehicular Cyber-Physical Systems

Vehicular Cyber-Physical Systems (VCPS) encompass the in-
tegration of physical systems, cyber systems, and vehicular com-
munication networks [228]. Physical systems comprise vehicles,
roads, and telematics/edge devices, while cyber systems include
data centers, central servers (i.e., cloud), and traffic manage-
ment systems. Vehicular networks, namely Cellular Vehicle-to-
Everything (C-V2X) and V2X communication networks, play
a key role in facilitating information sharing to improve driving
comfort, safety, and traffic management. VCPS utilizes various
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technologies to enhance the vehicular network and enable seam-
less and robust communication between vehicles and systems.

FL plays a critical role in VCPS by enhancing data privacy
and addressing resource constraints. FL uses a collaborative and
distributed learning framework that captures data heterogeneity
while eliminating the need to transfer local data from vehicles.
This enables VCPS to benefit from FL’s ability to preserve data
privacy and facilitate efficient learning without compromising
resource limitations.

In [229], an FL framework is proposed to detect and mitigate
data leakage in VCPS while enhancing data privacy. The pro-
posed scheme achieves good accuracy, efficiency, and high secu-
rity based on simulations of a real-world data set. In [230], an FL
framework (OES-Fed) is proposed for outlier detection and noise
filtering in vehicular networks. In [231], extreme value theory
(EVT) and personalized FL are proposed to model anomalous
events caused by the non-heterogeneous data distribution among
vehicles in vehicular networks. In [232], an efficient and secure
FL framework is combined with the Deep Q-Network (DQN) to
ensure an efficient and secure scheme to reduce the latency of
vehicular data sharing in vehicular networks.

FL has gained significant acceptance for enhancing the re-
silience and robustness of VCPS networks against adversarial
attacks. This is achieved through the integration of FL with
techniques such as differential privacy [233] and blockchain-
based approaches [132], [234]. These combinations have shown
promising results in improving the security and reliability of the
VCPS network.

H. Vehicle-to-Everything Communication

An efficient and robust V2X communication such as V2V and
V2I is a crucial step towards achieving an ITS. V2X commu-
nication plays a pivotal role in improving traffic management
and enhancing driving comfort. As ITS development progresses
further, we expect a substantial increase in data transmission
due to a large number of vehicles. This surge in data poses
challenges in terms of communication and energy consumption.
Moreover, given the private and sensitive nature of the data,
ensuring data security is essential. Therefore, it is crucial to
address these issues by adopting energy-efficient approaches and
establishing low-latency transmission in V2X communication
[235].

FL offers a promising solution for learning parameters with
minimal latency and data transmission due to its decentralized
training framework. It ensures data security while enabling
efficient client/server selection during the training process [236],
[237], [238] and resource management [239], [240]. These
approaches have demonstrated an effective reduction in com-
munication overload, addressing a significant challenge in FL
implementations.

In [241], [242], extreme value theory was used in conjunction
with an FL framework to model anomalous events, specifically
large queue lengths. Lyapunov optimization was also incor-
porated for power allocation, which contributed to improving
system performance.
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V. CHALLENGES AND FUTURE DIRECTIONS

In this section, we review various challenges in the use of
FLACAV as well as future research directions, as shown in Fig. 5.

A. Resource Limitations and Utilization

1) Collaboration Capabilities and Management in Massively
Parallel CAVs: Significant participation of CAVs in FL could
increase the solve time and memory utilization, and therefore
calls for an increase in computational demand for a global
model update. In particular, vision- and LiDAR-related percep-
tion tasks are characterized by large data sets that lead to high
communication costs. Decentralized FL and clustered FL [243],
[244], [245], [246] are being explored to reduce communication
overhead.

The high communication demands and low reliability of 5G
networks call for the development of 6G-V2X systems. Integrat-
ing 6G, V2X, and multi-access edge computing (MEC) powered
by ML techniques creates the potential to achieve efficient and
collaborative processing at the network edge. This approach
aims to overcome the limitations of current 5G systems and
pave the way for improved performance and reliability in future
networks [247], [248].

2) Challenges Due to Lack of Sufficient Real-World Datasets,
Simulators, and Pre-Trained Base Models: There is a need
for more real-world datasets (different weather conditions and
traffic scenarios), realistic high-fidelity FL4CAV simulators for
seamless FL integration [54], [249], [250], [251], and good
pre-trained models.

3) Low Model Accuracy: FL often struggles with a trade-off
between the accuracy achieved through model personalization
and imposing high computational requirements on edge devices
during learning. Split learning is one potential solution that
enables efficient inference in resource-constrained edge clients
while capturing both generalization and personalization capa-
bilities [252].

4) Inefficient Resource Utilization: Some of the issues of FL.
related to resource optimization include idle of powerful edge
devices, underutilized network infrastructure, neglected edge
devices without proper network connectivity, and discouraged
sharing of parameters from edge devices with diverse privacy
requirements [253]. Therefore, there is a need for a robust FL
framework that jointly utilizes and optimizes the resources of
the device, server, and network infrastructure.

Cooperative FL is a promising solution that overcomes these
shortcomings and has been shown to be feasible and beneficial
for learning processes leading to improved ML performance
and resource efficiency [254]. In another related study [255], a
cooperative architecture and an FL. combined with an RL-based
algorithm are proposed for the allocation of resources in CAV
networks.

B. Digital Ethics Issues

1) Privacy and Security Issues: Massive data also leads to
privacy and security concerns. This problem must be addressed
to train the ML model efficiently without compromising the
model’s accuracy and redundancy.
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2) Fairness and Incentives: There is a need for appropri-
ate rewarding policies and incentive mechanisms for CAVs
to share the quality data needed for efficient model training
performance [256].

C. Imperfect Methodology

1) Lack of Methods for Efficient Vehicle Selection and Re-
source Allocation: Currently, there are no efficient methods
that can filter useful data from CAVs to minimize network
loading. There are ongoing efforts to develop reliable methods
to optimally select vehicles and resource allocation schemes for
efficient model training and communication [257], [258], [259],
[260]. In [261], the overall training process was demonstrated
to be efficient when incorporating a client selection model. The
setup looks at the resource availability of the clients and then
determines the clients eligible to be part of the FL global model
learning process. In [190], it is demonstrated that the model
performance was improved with CAVs that were selected by
trust-based deep RL.

2) Catastrophic Forgetting: CAVs cannot store all user data
due to storage capacity limitations, and new data will always
be generated during training iteration. Therefore, when the
FL framework is updated on new data in iteration, the global
model might forget the previous knowledge, which may lead to
catastrophic forgetting. This is another open research problem
in FLACAV.

3) System Heterogeneity in FL4CAV: Poor performance of
the FL model (longer training time and a larger number of
communication rounds) is generally caused by poor connectivity
and slower devices (straggler devices). In traditional FL, a
communication round is not complete until the data from all the
chosen devices are available. Hence, various adaptive strategies
have been proposed to minimize the impact of stragglers and
also eliminate them, if possible [262], [263].

D. Inadequate Evaluation Criteria

1) FL Suitability Evaluation for New Users: It is often diffi-
cult for the newcomer vehicle to make any informed decisions.
In [190], a trust-aware Deep RL model is proposed to assist

Challenges and
Future
Directions

e Massively parallel CAVs

\ e Datasets, simulators, pre-
| trained models

| » Model accuracy
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Illustration of challenges and future directions of federated learning for connected and automated vehicles.

new vehicles in making better trajectory and motion planning
decisions.

2) Need for High Capability Diagnostics: There are several
noise factors that could influence the decision of the FL, such
as faulty sensors in a visual perception case and incorrect impu-
tation of missing data. The development of robust diagnostics
that can identify and eliminate the updates from these vehicles
is needed.

VI. CONCLUSION

This survey paper reviews FL algorithms, data modalities,
model security, and provides a list of critical applications and
challenges of FL4CAV. Currently, FLACAV also presents unique
challenges, such as ensuring data integrity, addressing com-
munication latency, managing heterogeneous data sources, and
maintaining model synchronization across different vehicles.
However, with proper design and implementation, FL can offer
significant advantages in terms of privacy preservation, network
efficiency, and collaborative intelligence for CAVs.

Further promising applications of FL are in the areas, such
as privacy-preserving driver behavior modeling, anomaly de-
tection, and predictive maintenance. With the advent of cloud
infrastructure, 6 G, V2X technology, and flying cars, the use of
FL models is expected to provide significant breakthroughs.
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