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Abstract—The Internet of Things (IoT) consistently generates
vast amounts of data, sparking increasing concern over the
protection of data privacy and the limitation of data mis-
use. Federated learning (FL) facilitates collaborative capabilities
among multiple parties by sharing machine learning (ML) model
parameters instead of raw user data, and it has recently gained
significant attention for its potential in privacy preservation and
learning efficiency enhancement. In this paper, we highlight the
digital ethics concerns that arise when human-centric devices
serve as clients in FL. More specifically, challenges of game
dynamics, fairness, incentive, and continuity arise in FL due
to differences in perspectives and objectives between clients and
the server. We analyze these challenges and their solutions from
the perspectives of both the client and the server, and through
the viewpoints of centralized and decentralized FL. Finally,
we explore the opportunities in FL for human-centric IoT as
directions for future development.

I. INTRODUCTION

The Internet of Things (IoT) encompasses a phenomenon
where physical devices, embedded with sensors, interact with
their surroundings and engage in data exchange with other
devices and systems via the Internet. These devices cover a
vast range, from compact thermostats to large-scale industrial
machinery, all interconnected within the IoT infrastructure.
The human-centric IoT applications focus on devices within
the IoT ecosystem that are designed to focus on human
interaction or significantly influenced by human factors [1],
such as smartphones, wearable devices, vehicles, and health-
care appliances. These devices, through their diverse sensors,
incessantly produce a wealth of highly sensitive data. For
example, images taken by smartphones can contain global
positioning systems (GPS) location information, smartwatches
can detect a user’s electrocardiogram (ECG), and vehicle nav-
igation systems document a driver’s routes. Certain companies
might require customers to disclose such rich personal data to
improve their machine learning (ML) models. The growing
demand for data invariably raises concerns over potential
privacy breaches and misuse of associated data, introducing
pressing digital ethics issues in our interconnected digital era,
such as privacy, security, and fairness.

Federated learning (FL) [2] represents a decentralized learn-
ing paradigm, designed to facilitate multi-party collaboration
while safeguarding user privacy. Its essence lies in sharing
ML models rather than raw user data, achieving privacy
preservation. Moreover, with the exponential growth of users
and their data, the transmission and storage of vast amounts
of raw data pose significant challenges for communication
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Fig. 1. The human-centric Internet of Things (IoT) applications within the (a)
centralized federated learning (CFL) and (b) decentralized federated learning
(DFL) frameworks.

channels and server storage. FL can also be perceived as
a form of knowledge distillation, distilling knowledge from
raw data into model parameters to alleviate communication
overhead. In line with the presence or absence of a server
for coordination, management, and aggregation, FL can be
categorized into two frameworks: centralized FL (CFL) and
decentralized FL (DFL) [3]. Initially proposed by Google re-
searchers and deployed in the Google keyboard for cooperative
learning in keyboard input recommendation models [4], FL
has found extensive applications in numerous sectors, such
as healthcare, mobile services, and intelligent transportation
systems, facilitating collaboration amongst widely distributed
edge devices or institutions.

FL presents a powerful approach for mitigating privacy
concerns inherent in collaborative ML. However, digital eth-
ical concerns extending beyond privacy are often overlooked
[5], especially within the context of the human-centric IoT.
Notably, most existing research inadequately addresses ethical
considerations from the narrow perspective of the client side.
For example, users of applications like Google Keyboard may
remain oblivious to or unconcerned about the underlying FL
algorithms. Their primary concern is that they are contributing
their model but not receiving highly accurate personalized
recommendations in return. This disparity in expectations can
breed disappointment and potentially lead to a discontinuation
of use. Consequently, human emotions may emerge as a
vital factor in ensuring the continuity and longevity of FL
frameworks in these contexts.

In this paper, we present a discourse on the digital ethical is-
sues arising within both CFL and DFL deployments in human-
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Fig. 2. Lifeline of digital ethics and the human-centric Internet of Things (IoT) applications in federated learning (FL).

centric IoT applications, as depicted in Fig. 1. We illustrate the
FL lifeline in Fig. 2, encompassing two trajectories, namely
human-centric IoT and the digital ethics of FL. Apart from
user privacy, people are generally concerned about fairness,
interpretability, accountability, transparency, and other aspects.
Additionally, issues related to user management, incentives,
penalties, continuity, and compatibility with new users are im-
portant considerations in FL systems. In addition to pursuing
higher performance and convergence in ML and optimizing
communication networks, there is also a growing interest in
the social, psychological, and economic aspects of FL, among
others.

The organization of this paper is as follows: First, we
provide an in-depth examination of the definitions and per-
spectives of clients and the server, as well as the underlying
reasons for the game dynamic relationship that arises between
the CFL and DFL frameworks (Sec. II). The discrepancies,
limitations, and information asymmetry between clients and
the server, especially the fundamental difference in their
objectives, inevitably give rise to a game dynamic (Sec.
III). Subsequently, the resultant trust issues emerging from
divergent objectives appear specifically as client skepticism
towards the fairness of the FL framework (Sec. IV). Notably,
the difference in perspective also leads to varied definitions
of fairness between clients and the server. Adjacent to the
issue of fairness is the problem of incentive mechanisms for
clients (Sec. V). Beyond the extensively researched server-
led incentive mechanisms, we discuss the potential for a
reputation system, established by the client community, to
become one of the primary mechanisms in DFL. Alongside
fairness and incentives, we also touch upon the continuity
of FL’s development and updates (Sec. VI). Based on these
four properties (i.e., game dynamics, fairness, incentives, and
continuity), we proceed to discuss opportunities to foster the
continuous, active, and positive development of FL (Sec. VII).
Finally, we draw conclusions from this paper (Sec. VIII).

II. VARIANCE OF PERSPECTIVES

Within FL, different roles possess distinct perspectives and
varied levels of knowledge. The core of the game dynamics
in FL stems from the differences in clients’ contributions
(e.g., the volume of raw data), the learning process, and the
information asymmetry among participants.

A. Omniscient (Authors’ and Readers’) Perspective

Currently, a significant portion of research papers on FL
tends to overlook the information asymmetry between clients
and servers. They often adopt an idealized perspective, opti-
mizing FL based on the assumption of complete and perfect
knowledge. These design methods, founded on the notion
of omniscient information, fail to address the practical chal-
lenges that arise from limited information exchange, client
data heterogeneity, and potential trust issues. Recognizing and
considering the scenarios of information asymmetry are crucial
for developing effective FL systems.

B. Server’s Perspective

In CFL, the role of the server is to receive model parameters
from all clients, aggregate them, and then redistribute the
aggregated model. The server, however, remains oblivious to
how clients collect data, train models, and handle the post-
processing of models. Some CFL frameworks make presump-
tions that the server is privy to more extensive metadata
from clients. For example, in the case of FedAvg, each client
not only sends their model parameters but also transmits the
volume of their local raw data. This additional metadata allows
the server to perform weighted averaging. Therefore, in CFL,
the resources or perspectives available to the server can be
summarized as previously aggregated models, current and past
models from clients, and other metadata that clients are asked
to send, such as volume of raw data, performance on local test
sets, losses, training epochs, etc.
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TABLE I
DEFINITION OF DIGITAL ETHICS FOR CLIENT AND SERVER IN CFL AND DFL

Perspective Game Dynamics
(Objective)

Fairness Incentives Continuity

Centralized Federated Learning

Omniscient Everything Generalized and
personalized model

Fairness-aware strategy Incentive mechanism design Server Management En-
hancement

Server Models and informa-
tion from the clients

Generalized model Overall accuracy is highest Revenue, market share, avail-
able generalized models

Management of clients
and models

Client Model from the
server

Personalized model Local accuracy is highest Rewards, punishments, and
model updates

Compliance with server
management

Decentralized Federated Learning

Omniscient Everything Generalized and
personalized model

Fairness-aware strategy Incentive mechanism design Encouraging spontaneous
management by clients

Server N/A

Client Model from other
clients

Personalized model Local accuracy is highest Exposure, reputation, and
model updates

Identify, accuse, and re-
port malicious clients

C. Clients’ Perspective

Considering the perspective of the clients, we discuss the
contexts of both CFL and DFL frameworks, as illustrated in
Fig. 1.

In CFL, clients are oblivious to each other’s information,
such as the number of clients, the volume of raw data each
client holds, the learning process, and the model performance
of each. In specific FL scenarios, for example, when healthcare
institutions act as clients for FL, the components such as
optimizers, loss functions, learning rates, and training epochs
differ from client to client. Additionally, clients lack knowl-
edge about the server-side details, like the aggregation method
employed by the server. Hence, in a CFL framework, the only
available information for each client is the aggregated model
received from the server.

In DFL, clients directly share models without the coordi-
nation of a server. For example, in a fully connected network
topology, every client within the DFL framework needs to
transmit their own model parameters to all other clients,
and reciprocally receive models from them. As a result, a
certain framework, such as network topology, communication
direction, frequency, and so forth, needs to be agreed upon
among clients. They also need to be cognizant of certain
information about other clients, like their addresses and ports.
Additionally, some extra metadata, such as the volume of raw
data, number of clients, model versions, etc., might also be
transmitted as per the requirement. Therefore, in DFL, for
the system to function correctly, clients need to establish a
communication protocol among themselves and are required
to directly disclose their local information to other clients.

III. GAME DYNAMICS

A. Why Game Dynamic Emerge?

Compared with distributed learning that assigns tasks to
nodes or miners, FL inherently emphasizes more on the data-
generating clients. Governed by these data-holding clients, and
propelled by self-interest and greed, the inclination towards

selfish behavior and a lack of trust in others could surface. This
drives the dynamics of interaction among clients in a game
dynamics context, where each seeks to maximize personal
gains.

This dynamic is primarily attributed to significant data het-
erogeneity among clients, where the server-aggregated model
may not exhibit exceptional performance on all clients. Firstly,
inter-group heterogeneity exists among clients. For example,
professionals such as professors, doctors, and lawyers using
Google Keyboard would require highly tailored recommenda-
tions due to their distinctive fields of expertise. Secondly, intra-
group heterogeneity exists within each group of users, wherein
each user’s academic discipline, level of knowledge, years of
expertise, and other factors vary. Lastly, system heterogeneity
among clients arises from variations in IoT devices, which in-
cludes disparities among sensor and instrument manufacturers,
differences in software versions of devices, and varying user
operations.

B. Game Dynamics between Client and Server

In CFL, clients and the server share similar yet funda-
mentally different objectives: clients aim to achieve the best-
performing personalized model on their local dataset, while the
server seeks to achieve the best average-performing general
model across all clients. While this setup can be mutually
beneficial, a game dynamics relationship emerges between the
clients and the server due to the trade-off between personalized
performance and generalization.

Personalized FL represents a potential solution to mitigating
the game dynamics between clients and the server, as it seeks
to satisfy the objectives of both parties [6]. There are two
main strategies in this context: client compromise and server
compromise. In the case of client compromise, a simplistic
implementation would involve the client performing additional
gradient descent upon receiving the generalized global model
(i.e., meta-learning), thus achieving personalized expansion
[7]. Conversely, in server compromise, a common practice is
clustered FL. In this scenario, the server can create multiple
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TABLE II
STATE-OF-THE-ART TECHNOLOGIES, STRATEGIES, AND MECHANISMS

Issue Definition Technologies, strategies, and mechanisms

Game Dynamics
(Objective)

Divergent objectives amongst clients and server • Personalized FL
– Server compromise (e.g., clustering, knowledge distillation)
– Client compromise (e.g., meta-learning, data augmentation)

Fairness Contribution and performance distribution among
clients

• Averaging (i.e., arithmetic mean)
• Weighted averaging (e.g., FedAvg is based on sample volume)
• Post-processing (e.g., personalized CFL)

Incentives Clients contribute honestly, actively, and positively • Feedback (e.g., aggregated model)
• Reward (e.g., sponsorship, subscription)
• Reputation (e.g., like, follow, share)

Continuity FL maintains its operations and efficiency to prolong
its lifecycle

• Enlistment of new clients
• Rapid and efficient model iteration
• Low computational, communication, and storage overheads

aggregated global models based on the nature of the clients or
clustering of client models, with even the potential for multiple
servers to partition different regions for aggregation (i.e.,
hierarchical FL). Regardless of whether it is client compromise
or server compromise, these strategies both entail additional
overheads, such as computation, communication, and storage.

C. Game Dynamics among Clients

In DFL, despite the symmetric roles of clients in com-
munication and knowledge propagation, competition can still
emerge due to data heterogeneity and system heterogeneity.
They all share the same but conflicting objective of striving
for the best model performance on their respective local data
sets. However, given the data heterogeneity among clients, it
is more common that the models from other clients perform
poorly on their local dataset [8].

Analogous to the two compromise strategies in CFL, DFL
also incorporates similar personalized methods to enhance the
performance of aggregated models on clients’ local data sets.
Apart from model post-processing methods such as meta-
learning, DFL can reduce data heterogeneity among clients
within a cluster by establishing different topological structures,
mimicking the clustered FL. In particular, in real-world DFL
scenarios, clients might prefer freely forming their clusters
and establishing DFL network topologies among similar and
familiar populations, such as city clusters and suburb clusters
determined by geographical locations. These more flexible and
customizable network topologies, although more challenging
to establish initially, also confer more personalized and trust-
worthy DFL with communication cost advantages.

IV. FAIRNESS

A. How to Define Fairness?

A fairer system would enhance client trust, incentivize client
contributions, reduce the potential for free-riding behaviors,
attract more new client engagement, and bolster the long-term
continuity of the system, among other benefits. Fairness has
always been a central theme in human cooperation, and FL is
no exception. Particularly in CFL, the method of aggregation

has spurred discussions concerning fairness. The question of
fairness in FL is indeed become a focal point of discourse.
It involves considering whether the FL framework should
prioritize the majority of users and clients with a larger number
of samples, or whether it should also take into account clients
with fewer samples that may have lower representativeness
[9]. Furthermore, the perspectives of both clients and the server
may also sway their interpretations of fairness. Clients may not
have full visibility into the server’s aggregation algorithm, nor
comprehend the performance of the aggregated model across
different clients.

B. Fairness of Server

From the perspective of the server, its objective is to
pursue a generalized model that maximizes the overall average
performance of all clients. Driven by this objective and the
pursuit of generalization in FL, the server’s concept of fairness
often tends to favor clients with a greater influence or voice. In
the classic FedAvg algorithm, the server conducts a weighted
averaging aggregation based on the sample number of each
client. This approach seems fair because the sample size can
extent reflect the performance and credibility of the model to
some extent, and can be seen as a reward for clients with
more samples, as the aggregated model is more likely to bias
towards them. However, for those underrepresented clients,
the performance of the aggregated model might be unsatis-
factory. Furthermore, the dominance of large sample clients
could lead to low sample diversity and cause the aggregated
model to lose its generalization capability. On the contrary,
an FL framework involving non-weighted averaging during
aggregation might demotivate clients with large sample sizes,
subsequently diminishing system performance and continuity.
Hence, from the server’s standpoint, the conception of fairness
remains a topic open to debate.

C. Fairness of Client

Conversely, from the client’s perspective, their interpretation
of fairness tends to be simpler. This is primarily due to the
likelihood that they are either unaware of or unconcerned
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with the server’s aggregation algorithm and the performance
of the aggregated model on other clients. Hence, within the
FL framework, clients would consider the system fair from a
standpoint of individual fairness, provided the model maintains
acceptable performance locally. A noteworthy example is
Google Keyboard, where users contribute local model param-
eters in their usage, and in return, benefit from personalized
recommendations. Interestingly, these recommendations from
Google Keyboard are not necessarily completely accurate. As
long as the output is within the user’s range of acceptability,
the application can maintain its advantage relative to non-
personalized keyboard applications. Of course, it is crucial
to note that the level of acceptable performance may vary
according to individual clients’ requirements and should not
be generalized. When using Google Keyboard, users are often
oblivious to or indifferent towards the server’s aggregation
algorithm and have minimal or no knowledge of the model’s
performance among other users. Users are likely to be self-
interested, prioritizing their user experience without consider-
ing any factors related to others, i.e., a non-cooperative game
scenario.

V. INCENTIVES

A. Incentives Driven by Server

As the owner, leader, and manager of FL frameworks, the
server typically aspires for its framework to undergo large-
scale, active, positive, and continuable development. Thus,
how the server employs incentive strategies to encourage
clients to report their models, metadata, contributions, and
even flaws in a rational, honest, and proactive manner remains
an unresolved issue. The right to use the aggregated model
itself serves as a form of reward (passive incentive), and cur-
rent incentive strategies also contemplate offering additional
rewards disseminated by the server to motivate clients (active
incentives). The client contributions in these incentive strate-
gies can follow economic principles, such as game theory,
auction, contract, matching theory, and so forth [10]. The
Stackelberg game, in particular, has garnered considerable
attention due to its alignment with the behaviors of the server
and clients in a CFL setting. Besides these active incentives,
punitive incentives may also serve as a potential strategy.
For example, the right to use the aggregated model could be
revoked if a client’s contribution does not meet expectations.

B. Incentives Driven by Client Community

Within the context of DFL, the absence of server coordina-
tion and the customizability of diverse network topologies ren-
der the incentive problem more variable and challenging [11].
On the one hand, there is no server to generate and distribute
rewards, while on the other hand, calculating client contri-
butions is especially difficult due to mutual distrust among
clients. Therefore, certain passive incentive strategies may
become more effective and prevalent than active incentives.
On one side, clients can acquire the right to use the models
by participating in the DFL community. Simultaneously, due
to the factors of information asymmetry and mutual invisibility
of information among clients, they are unaware of the size of

each other’s contributions, such as the volume of raw data,
training epochs, optimization results, etc. Consequently, they
might be more inclined to share models imbued with local
knowledge in exchange for other clients’ model updates. The
motivation here is to garner as many resources as possible from
the client community, albeit at the expense of disclosing local
resources. We can draw inspiration from altruistic contribution
behaviors observed in human societies, such as open-sourcing
on Github, answering questions on Stack Overflow, voluntarily
performing peer reviews, etc. While free-riding attacks (where
some users garner knowledge from others without contributing
themselves) are inevitable, the influence of reputation and
prestige can nonetheless maintain a virtuous cycle within the
community [12].

VI. CONTINUITY

Continuity is a critical feature for the survival, revenue
generation, and expansion of any application, system, or
framework. In terms of FL, continuity signifies the pause,
elimination, and reactivation of inactive clients, the continual,
active, and voluntary updates from current clients, and the
willingness, eligibility, and data diversity of a large number
of prospective clients.

A. Continuable Development of Server

From the server’s perspective, continuable development ne-
cessitates addressing and responding to the needs of these three
classes of clients - inactive, current, and potential - while also
considering the maintenance of different versions of the model
to prevent catastrophic forgetting. More specifically, due to the
continuous generation of new data by clients in the real world,
particularly IoT devices, the local model updates of clients
are typically based on the latest data. Although new models
are evidently more compelling due to factors such as scenario
updates, user utilization, and concept drift, old versions of the
models do not entirely lose their contributions. A potential
example could be an application using IoT devices, such as
a smartwatch that monitors user’s ECG patterns. The ECG
readings of users are likely to differ between weekdays and
weekends, thus the models derived from weekend data might
warrant individual storage. In practice for FL, while the server
is aggregating the current versions of local models, it also
incorporates previous versions with appropriate weighting.
Furthermore, clients are granted the ability to trace back and
retrieve prior versions of the model at any time. This feature
serves as a safeguard against potential instability in client
performance due to model updates.

B. Continuable Update of Client

In the context of CFL, clients strive for long-term stability,
rapid iterations, and efficient updates of the aggregated models
from the server. Thus, they may work hard to deploy server-
updated models at the earliest opportunity to achieve enhanced
performance and user experience. Beyond their expectations
from the server, under rational circumstances, clients might
also attempt to report their model parameters to the server
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as rapidly, thoroughly, and accurately as possible, to ensure
their models are significantly considered during the server’s
aggregation process. This is because the server cannot indef-
initely wait for all clients to upload their models. Therefore,
in a rational state, the behavior of client updates is balanced
between the long-term nature of data collection and the
rapidity of model updates.

In the scenario of DFL, clients within the community may
voluntarily identify, denounce, and report malicious clients
performing adversarial attacks (e.g., model poisoning) in order
to protect the community, given that this relates to their own
interests. This is because the incorporation of models from
these malicious clients into the FL process could potentially
harm their interests. Clients might also proactively share their
models with other clients, establishing a good reputation, so
that other clients will be inclined to promptly share their model
updates in return. One potential concern is that the DFL client
population may exhibit exclusionary tendencies. Specifically,
the mistrust towards new clients and the uncertainty brought
about by their models, especially within smaller communities,
can be quite pronounced. This may further hinder the conti-
nuity and growth of such small-scale communities.

VII. OPPORTUNITIES

A. Interplay of Game Dynamics, Fairness, Incentives, and
Continuity

The issues of game dynamics, fairness, incentive mech-
anisms, and continuity in FL are interrelated and mutually
impactful. For example, if an FL framework could perfectly
achieve the objectives of all clients, such as Google Keyboard
ideally meeting user expectations, users would naturally di-
minish their concerns about fairness. A fairness-aware strategy
can also be considered as an incentive mechanism where
clients contributing more are rewarded proportionally. Taking
FedAvg as an example, clients might make great efforts to
contribute as much local data as possible to the model training,
to gain a more significant voice during the server’s model
aggregation process. Therefore, fairness-aware strategies of
weighted aggregation indirectly incentivize clients to make
more contributions. Concurrently, this enhances the continuity
of the FL framework, as each client will make an effort to col-
lect data, train models, and participate in FL updates promptly
to gain rewards. Under such continuable conditions, the game
dynamics within the FL framework are also mitigated, as each
client generates a steady stream of data resources, enabling the
training of more robust models. Therefore, for the issues of
game dynamics, fairness, incentive mechanisms, and continu-
ity, both parallel multi-solution approaches and single-solution
breakthroughs are viable options.

B. Integration with Sociology and Ethology

FL essentially represents a form of knowledge propagation,
a method that is already widespread, diverse, and matured
within both human societies and animal behaviors [13]. For
example, the instructive paradigm between a teacher and
students can offer insights to CFL, resonating with the archi-
tecture of a large model within the server and smaller models

among clients utilized in federated knowledge distillation [14].
Intriguingly, a similar hierarchical structure is observed in the
field of ethology, particularly within ant colonies or bee hives.
Here, directives (models) from the queen ant or queen bee
(server) are disseminated to the worker ants or bees (clients),
offering a clear instance of role distribution.

DFL is increasingly becoming a focus for researchers, due
to its capacity to circumvent limitations imposed by server
dependency, and also its reflection of more prevalent modes
of knowledge dissemination among clients within human soci-
eties and ethology. For example, in the context of conferences,
speakers (clients) present their research findings (models) to
all attendees (other clients), which can be viewed as a manifes-
tation of fully connected DFL. In group collaborations, each
team member (client) contributes a part towards a common
goal (model), mirroring the concept of split DFL. Interestingly,
similar decentralized patterns of knowledge dissemination are
observable in animal behavior. For example, within a school
of fish, individual fish (clients) only communicate with their
neighbors (gossip protocol), but when danger arises, the alert
signal (model) spreads across the entire school (other clients),
promoting swift collective evasion [15].

Therefore, incorporating insights from sociology and ethol-
ogy can effectively enhance FL organizational structures that
are centered on IoT users, better aligning with the psycholog-
ical expectations of users as clients.

C. Deployment Optimization in Federated Learning

Current research mainly centers on the optimization of
training and communication within FL, largely overlooking
the strategy and timing for deploying the base model in FL
on client devices. Specifically, in classical algorithms such as
FedAvg, the fundamental operational cycle entails download
→ train → upload → download → deploy. In contrast, per-
sonalized algorithms, such as meta-learning, follow a cycle of
download → train → upload → download → train → deploy.
Therefore, it’s evident that the deployment sequence within
the communication and training processes significantly affects
the performance of the model. With this in mind, we propose
considering two distinct deployment sequences, facilitating
the deployment of either generalized or personalized models,
contingent on the specific use case:

(i) Deploy post-download for a generalized model: The
model deployed is the aggregated one, offering wider gen-
eralization capabilities. However, it may not necessarily
deliver optimal performance on local datasets.

(ii) Deploy post-training for a personalized model: The model
deployed is the one locally trained on the aggregated
model, offering a higher degree of personalization and
subsequently, enhancing confidence in the model’s per-
formance.

Beyond the influence of the order of deployment on perfor-
mance within the FL process, in the real world, due to the
sequential and time-sensitive nature of data collection from
IoT devices, excessive waiting for responses from the server
or other clients may degrade model performance. Therefore,
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deployment optimization in FL, as an issue rooted in real-
world applications, builds upon the foundational capacities of
training and communication to further enhance FL’s perfor-
mance, credibility, and operational efficiency.

VIII. CONCLUSION

In this paper, we explore and discuss FL in the context of
human-centric IoT applications, with a particular emphasis on
the advancements made by FL algorithms in addressing human
privacy concerns, as well as other digital ethical dilemmas. We
take into account perspectives from three distinct roles: the
omniscient, clients, and the server, with a detailed analysis of
both the CFL and DFL frameworks. Each of these roles, char-
acterized by varying objectives and information asymmetries,
raises game dynamics and trust crises, which in turn incite
debates around fairness, incentive, and continuity. This paper
aims to highlight the prevalent disregard for human digital
ethics in the current FL paradigm and to inspire the future
design of FL frameworks from sociological, psychological,
and economic perspectives.
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