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Abstract—Federated learning (FL) has been gaining attention
for its ability to share knowledge while maintaining user data,
protecting privacy, increasing learning efficiency, and reducing
communication overhead. Decentralized FL (DFL) is a decentral-
ized network architecture that eliminates the need for a central
server in contrast to centralized FL (CFL). DFL enables direct
communication between clients, resulting in significant savings
in communication resources. In this article, a comprehensive
survey and profound perspective are provided for DFL. First, a
review of the methodology, challenges, and variants of CFL is
conducted, laying the background of DFL. Then, a systematic
and detailed perspective on DFL is introduced, including iteration
order, communication protocols, network topologies, paradigm
proposals, and temporal variability. Next, based on the definition
of DFL, several extended variants and categorizations are
proposed with state-of-the-art (SOTA) technologies. Lastly, in
addition to summarizing the current challenges in the DFL,
some possible solutions and future research directions are also
discussed.

Index Terms—Decentralized learning, federated learning (FL),
Internet of Things (IoT), network, privacy preservation.

I. INTRODUCTION

FEDERATED learning (FL) is a decentralized learning
paradigm with natural privacy-preserving capabilities,

which shares only model weights instead of user data [1]. FL
was first proposed by Google researchers in 2016 [2] and was
applied to build a language model collaboration framework
on Google Keyboard to learn whether people clicked on
recommended suggestions and contextual information [3]. In
2020, Google researchers expanded the concept of FL to
federated analytics [4], [5], [6], [7], [8], [9], [10], extending
from learning tasks to collaborative computing, data analysis,
and inference, further deploying it within Google Keyboard.
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FL has demonstrated its excellent capabilities in various
areas, including intelligent transportation, Internet of Things
(IoT), healthcare, manufacturing, agriculture, energy, remote
sensing, and more [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28].
FL also breaks geographical limitations allowing efficient
collaboration worldwide [29]. Researchers employed FL to
aggregate data from 20 institutes worldwide to train a universal
model to predict clinical outcomes of COVID-19 patients [30].
FL improves the generalization capability of the model to
include knowledge of diverse data. Other researchers have
also used FL to aggregate data from 71 sites for rare cancer
boundary detection, which greatly enriches the data set to
support research on rare diseases [31].

Traditional FL focuses on the decentralized learning and
centralized aggregation paradigm established by data paral-
lelism. Data parallelism refers to the situation where the raw
data of the clients is generated in parallel locally, and this
raw data is neither sent out nor visible to others. Each client
trains a model based on its local data and then communicates
the model parameters with the server to ensure the effective
integration of learning results from each client and obtain
a global model. An FL taxonomy refers to the number
and nature of clients participating in the learning network,
including cross-silo and cross-device FL frameworks [1]. The
clients in cross-silo FL usually are different organizations,
research institutions, data centers, etc., which may have more
reliable communication, computational resources, and a large
amount of data. The clients in cross-device FL are huge mobile
or IoT devices, which can encounter potential bottlenecks in
communication and computation. Another FL taxonomy is
considered for differences in data distribution among clients,
including horizontal, vertical, and transfer [32]. In horizontal
FL, clients have more similar sample features and fewer
identical users. Clients in vertical FL have more similar users
and fewer similar sample features. Federated transfer learning
clients have neither many similar sample features nor similar
users.

In this article, we present a thorough investigation into
decentralized FL (DFL) and offer novel perspectives on its
taxonomies. Distinguishing from the conventional centralized
FL (CFL) that relies on a central server for aggregation, we
specifically focus on the less-explored DFL framework, which
operates independently of a central server. Fig. 1 illustrates a
comparison between CFL and DFL across nine key evaluation
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Fig. 1. Comparative analysis between CFL and DFL across various
performance metrics. Each axis represents a metric with the plotted values
indicating the relative strength of the respective FL approach in that domain.

metrics, which are the focal points of current state-of-the-
art (SOTA) research and worthy of further investigation
[33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46], [47], [48]. Given their inherent characteristics,
CFL and DFL each exhibit unique advantages in different
applications.

Fig. 2 shows the illustration of local learning, centralized
learning, CFL, and DFL. In the local learning strategy, the
user data and trained model of each client are only used
locally, and they do not communicate with any other clients
or servers, as shown in Fig. 2(a), but this may lead to
overfitting. Alternatively shown in Fig. 2(b), the centralized
learning strategy involves the transmission of raw data in
the communication between clients and the server, which
consolidates and centralizes the learning process but does not
guarantee the privacy of the users. Both of these strategies are
often used by researchers as baselines to compare with FL.

CFL is a centralized structure where a server will commu-
nicate, coordinate, and manage all clients. Fig. 2(c) shows the
communication between clients and the server. Clients learn on
local data and then upload the trained model parameters to the
server. The server aggregates the local models and then shares
the global model with the clients. The idea is that all clients
contribute to one global model, and the one global model is
applied to all clients. For CFL, clients only share the trained
local model parameters with the server but not the users’ raw
data. FL not only protects users’ privacy and improves learning
efficiency, but also saves communication resources when the
model size is much smaller than the data size.

DFL is a decentralized structure in which clients communi-
cate and share model parameters with each other without any
server. There are relevant designations in the recent literature,
such as peer-to-peer FL [49], server-free FL [50], serverless
FL [51], device-to-device FL [52], swarm learning [53], etc.
Fig. 2(d) shows clients communicating directly with other
clients without server coordination. Since there is no unified
coordination and configuration of servers, the communication
network between clients is more diverse. For the DFL discard-
ing the server is considered to be more customizable, which
can further save communication and computational resources
with higher confidence in diverse variants. The pointing and

peer connections in the communication network are adaptively
configured and changed according to the scenario, which is
one of the advantages of DFL. In addition to the typical
line, ring, and fully connected peer connection types, it is
conceivable to connect based on geographical neighbors, the
similarity of clients, communication protocols, etc.

The concept of DFL was first proposed in the year
2018 [54]. As of June 1, 2023, a search on Google Scholar
yields 1,350 results related to DFL, with a substantial number
of 652 contributions coming from the year 2022 alone. The
research associated with DFL exhibits a persistent exponential
growth trajectory. DFL has received extensive attention as an
emerging framework [55], [56], [57], [58], [59], [60]. The
most significant advantage of DFL is that it eliminates the
communication resources needed for the server as an inter-
mediary step and the high bandwidth requirements associated
with it. Xu et al. [61] listed DFL, model compression, selective
client communication, and low communication frequency as
four ways to reduce communication costs. Lian et al. [62]
demonstrated the advantages of decentralized learning over
centralized learning, especially since the number of clients in
decentralized learning is proportional to the speedup.

Although FL has shown unprecedented advantages, most
of the current research has been limited to CFL. DFL, as an
essential branch in FL, is proliferating and offering benefits
over CFL. Recent surveys have focused more on CFL, with
less attention given to DFL [61], [75], [76], [77]. Furthermore,
there is a lack of a comprehensive, in-depth, and insightful
survey that establishes the logic of building a DFL system,
including iteration, communication protocol, network topol-
ogy, paradigm, and more. This article begins with a review of
CFL, summarizing its challenges and various extended variants
as potential solutions that can be compared and analogized
with DFL. As an emerging field, this survey aims to fill gaps
in the DFL survey literature by covering perspective papers
that are currently not included. It systematically integrates
and categorizes the SOTA research in DFL. A detailed and
comprehensive comparison of our survey with other related
DFL surveys can be found in Table I.

The contributions of this article are as follows.
1) We provide a description of CFL, summarize the chal-

lenges, and offer a detailed introduction to the various
variants, their roles, addressed issues, and advantages.

2) We systematically define and describe five taxonomies of
DFL, including iteration order, communication protocol,
network topology, paradigm proposal, and temporal
variability. To the best of our knowledge, this is the first
comprehensive and insightful perspective paper for DFL.

3) Based on the network topology, we propose and envision
five variants of DFL to categorize the recent literature,
anticipate potential application scenarios, and highlight
the advantages.

4) We summarize five current challenges, possible solu-
tions, and future research directions for DFL.

The presentation of this article is summarized as shown
in Fig. 3. Section II reviews the history of CFL, the exist-
ing challenges, and some variants as potential solutions.
Section III provides the definitions and descriptions of DFL
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Fig. 2. Illustration of local learning, centralized learning, CFL, and DFL. (a) Clients are trained with local user data only. The clients neither share raw data
nor communicate with each other. (b) After clients send the user data packets to the server, the server trains a general model using all the data. The generalized
model is then shared with all clients. (c) Clients send the locally trained model parameters to the server. The server aggregates all the local models and then
transmits the aggregated global model parameters to all the clients. (d) Clients share their locally trained model with other clients. Subsequent clients then
continue to learn, personalize, and adapt the model locally, while also exchanging and propagating the model parameters that possess local knowledge.

TABLE I
COMPARISON OF RELATED SURVEYS OF DECENTRALIZED FEDERATED LEARNING

communication protocol, network topology, and paradigm
proposal. Section IV demonstrates several variants in DFL,
followed by Section V analyzing the challenges of DFL.
Finally, Section VI provides a summary of this article.

II. REVIEW OF CENTRALIZED FEDERATED LEARNING

McMahan et al. [2] proposed the first mature and most
popular FL algorithm, federated averaging (FedAvg). At each
communication round, clients upload their trained local models
to the server, and the server weighted averages all local models
according to the number of client samples. Based on FedAvg,
various derivation and optimization schemes exist to address
the challenges in the FL algorithm [78], [79]. Li et al. [80]
developed an advanced algorithm FedProx to penalize the

bias of the local model to the global model by a proximal
term. The advantage is to limit the significant variance and
unstable convergence of local models due to overfitting on
clients with system heterogeneity. Wei et al. [81] took into
account the privacy leakage concern of model parameters
uploaded by clients in FL and proposed to improve the
differential privacy by adding noise before the client sends it
to the server for aggregation. Also, the game tradeoff between
FL convergence and privacy preservation and the optimal
communication rounds were highlighted.

Although the diverse derivations that exist complement the
performance of FL, there are undeniable drawbacks, such as
a Single Point of Failure (SPoF) on the server. In this section,
after presenting some of the challenges and limitations of
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Fig. 3. Roadmap for this perspective paper.

the server, we show some variants of the solution and SOTA
technologies.

A. Challenges in Centralized Federated Learning

For CFL, the server takes on many responsibilities and
challenges, with large service providers, such as large orga-
nizations and research institutions, playing the role of server.
While these large providers have unparalleled resources com-
pared to small workshops, there are some concerns here as the
number of clients grows endlessly [82].

1) Client heterogeneity predominantly stems from three
latent factors: 1) individual; 2) group; and 3) sys-
temic heterogeneity [80], [83], [84], [85]. Individual
heterogeneity arises from differences inherent to each
sample or individual, such as variances among patients
in a hospital setting. Group heterogeneity is rooted
in shared characteristics among subsets of samples,
such as patients of different age groups, regions, or
medical backgrounds. Systemic heterogeneity originates
from variations introduced during data collection by
the system, which can include discrepancies from dif-
ferent equipment, clinical practices, or data collection
personnel.

2) Communication resource is limited on both the server
and client sides [86], [87]. Although FL has dramatically
reduced the consumption of communication resources by
sharing only model parameters instead of user raw data,
communication resources are a serious problem consid-
ering the large number of parallel clients (up to one
billion). In particular, when delays in communication
cause the server to wait for clients with communication
problems, it can also cause the whole FL framework to
become highly inefficient. Some FL communication pro-
posals have been proposed to improve communication
efficiency [88], [89], [90], [91].

3) Computational and storage resource on the server side
are also challenged [92], [93], [94]. The server needs
to store and aggregate the models of these billions of
clients. Even though lightweight models are emerging
recently [95], [96], the need to compute and store model
data can easily reach petabytes in size [97]. Besides the
current version of the massive local model, subcondi-
tionals and versioned storage of the global model may
also be required. Additionally, as clients demand real-
time processing of a large volume of inference tasks,
this places high demands on the computational resources
required during inference [98].

4) Fairness, security, and trustworthy have always been
crucial concerns in CFL, with these factors significantly
impacting the system’s overall reliability, user confi-
dence, and data integrity. A series of questions related to
security and trust form the chain of suspicion: 1) whether
the server aggregation model is reasonable; 2) whether
the global model will have high performance across
all clients; 3) whether the global model is validated;
and 4) how to use the global model securely, and
whether the server is secure from attacks [99]. For
security issues, there are different directions of research,
including malicious attacks [100], data poisoning [101],
anomaly detection [102], and privacy protection [81].
For trustworthy [103], fairness [104], incentive [105],
and interpretability [106] in FL are also worthy research
directions.

5) Unreliable connection in FL can stem from factors,
such as unreliable communication conditions, malicious
attacks, or server malfunctions, leading to delays, packet
loss, or noise in model transmission [107], [108], [109].
As all clients typically communicate with a central
server, an SPoF can halt the entire system’s update
process. Although employing multiple edge servers can
distribute the risk of SPoF, it may still cause the system
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segments connected to an affected edge server to become
unresponsive. Kim et al. [110] and Qu et al. [111] have
explored using blockchain technology to mitigate SPoF
by replacing the central server role, but this approach
diverges from the conventional CFL model.

B. Variants of Centralized Federated Learning

The network variants and extensions of CFL are designed to
address the above challenges and adapt to different real-world
application scenarios.

1) Hierarchical FL features a classic and popular
client-edge-cloud architecture, where model parame-
ters are infrequently transmitted between the edge and
the cloud, effectively reducing communication over-
head [112], [113], [114]. It usually perform additional
aggregations by setting up additional edge servers [115],
which aim to spread the communication [116] and
computing pressure and reduce the impact of SPoF.
These additional edge servers are geographically closer
to clients, resulting in less communication resource con-
sumption and lower latency [117], [118], [119]. After
one or more edge server aggregations, the edge servers
then upload the edge global model to the cloud for
aggregation into a global model. In addition to com-
munication optimizations, the geographic proximity of
edge servers to clients may also lead to better adaptation
of edge servers to the connected clients. Edge servers
and connected clients can be considered geographically
personalized clusters. For example, by assigning edge
servers to states in the United States, the state edge
servers can be more personalized to the state’s user
scenarios and user habits, such as weather, number of
users, time zone, ethnicity, age distribution, etc.

2) Personalized FL can be classified into two categories,
i.e., global model personalization and personalized
model architecture [120], [121], [122]. Global model
personalization usually starts with a global model, and
then the client personalizes this global model to fit
the local user. Personalization is the behavior of the
client independent of the server, such as federated
transfer learning to transfer global model knowledge
locally [123], [124]. The personalized model architec-
ture changes the traditional FL architecture to develop a
personalized model with user knowledge, which is the
behavior of the server. A famous architecture is clustered
FL that has been of interest to researchers [83], [125].
The client model in the personalized FL framework is
closer to the user, so it is known for its high accuracy and
confidence. In particular, it is a highly effective solution
for nonindependent and identically distributed (non-IID)
data. When the aggregated global model deviates from
the user, personalization can transfer the model and
adapt it to different heterogeneities.

3) Split FL splits the model for learning, where the server is
responsible for some model layers [126], [127], [128].
The only data sent by the client to the server are the
hidden representations and/or gradients in the cut layer

of the model. The client not only shifts part of the
learning task to the server but also does not share
the user data. Compared to traditional FL, the split
FL framework has similar accuracy and communication
efficiency with a lower learning burden on the client side
and more robust privacy protection. However, split FL
is still in its early stages and has significant limitations,
such as the need to consume more communication
resources. Especially the presence of SPoF on the server
can have even greater consequences.

4) Graph FL is particularly effective for applica-
tions involving graph-structured data, such as social
networks, transportation networks, molecular structures,
etc. [129], [130]. This effectiveness stems from the
fact that clients possess local or independent graph
data, which includes rich relational information about
nodes and edges. More specifically, Graph FL encom-
passes three levels, depending on the level of detail
clients have about the graph data. These levels include
multiple graphs, different parts of multiple graphs,
and parts of a single graph [131]. In addition to
employing graph neural networks for graph data in
FL, some researchers have also considered topological
graphs between clients [132]. These topological graphs
can be established based on various factors, explor-
ing network connectivity conditions between clients
and the server, data and model availability of clients,
as well as similarities and data generality among
clients [133], [134], [135].

5) Asynchronous FL is designed to overcome the lim-
itations of FL frameworks that require clients to
synchronize model updates. This approach aligns well
with the real-world scenarios in which the client’s data
updates and model training vary significantly. In these
systems, heterogeneous clients have different amounts
of data and computational resources and can train and
update their local models at any time without the server
having to wait for all clients to synchronize [136], [137].
Asynchronous FL is particularly suitable for environ-
ments with dynamic changes, a large number of clients,
and a wide distribution, such as mobile devices, which
may conduct model training during idle times rather than
during routine user interactions [138], [139].

Variants of CFL currently exist with exotic frameworks
that may include single, multiple, sub, and master servers
to optimize and target different problems. For exam-
ple, Zhang et al. [140] proposed the (Com)2Net, a
large-scale distributed computing framework capable of span-
ning space–air–ground, end-edge-cloud, and multidata center
environments, facilitating ubiquitous connectivity and collab-
orative computing in FL. In addition to various variants, a
popular approach is to assemble various variants of the FL
framework to target multiple issues [141].

C. Definition of Client and Server

This article proposes a new taxonomy that focuses on the
roles played by communication endpoints in FL. We argue that
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the roles of edge devices, compute clusters, institutions, and
organizations are relative rather than absolute. For example,
a university may act as a central server when managing edge
devices within its campus, but it should be considered as
a client when communicating with other universities. The
classification of a role as a client can be determined by whether
it generates raw data and stores the data locally. For instance,
a healthcare institution both generates clinical data for patients
and retains it in its own database without sharing it with
other institutions. Additionally, clients and servers are not
mutually exclusive roles. A healthcare institution, for example,
can act as both a client and a server [31]. It generates raw
patient data and performs local training while also serving as
a server by receiving model parameters from other healthcare
institutions, aggregating them, and sharing the updated model.
In practice, it can be considered as a star topology network
in DFL.

The emphasis on a star topology network instead of CFL
is driven by the more pressing issues of fairness and trust in
FL systems when an institution simultaneously possesses raw
data for local training and assumes the role of a server for
aggregation. Ensuring that this institution does not favor its
local data during aggregation poses an open question. As the
saying goes, One cannot be a judge, jury, and executioner.
Similarly, an institution should not act as both a client and
a server. However, this situation is more common in the
real world. On one hand, institutions with more raw data
have greater influence and often initiate tasks. On the other
hand, institutions with more data also tend to have more
abundant computing resources, making them better suited for
the server role. In today’s world, where large institutions
possess more resources and hold greater influence, addressing
the interests, privacy, and fairness of nonrepresentative clients
is a challenge.

III. TAXONOMY OF DECENTRALIZED

FEDERATED LEARNING

In this section, we begin by analyzing and comparing
DFL and other related designations. Subsequently, we pro-
vide a well-organized, clear, and precise description of the
various iterations, protocols, network topologies, paradigms,
and variations in DFL, as presented in Table II. It is worth
noting that the table comprises five distinct taxonomies, which
may exhibit overlapping meanings as well as conflicting
aspects, and can also be applied in a complementary manner.
These taxonomies, representing the viewpoints of the authors,
include summarizations of existing literature, extensions of
understanding, and even inferences regarding potential defi-
nitions. This comprehensive approach aims to strengthen the
comprehension and categorization of concepts in the field of
DFL.

A. Iteration Order

In general, FL requires multiple iterations to converge, and
iteration order represents the order of each client in each
iteration or the way client queues are formed in DFL. In
CFL, clients iterate in a parallel manner, and the order in

which the server receives the client models does not affect
the convergence of the system. However, in DFL, the iteration
order of clients will significantly affect the performance of
client models, and we continue to discuss this issue in depth
in Section III-D. Depending on the specific usage scenario and
task requirements, the client iteration order in DFL can be
determined to be sequential, cyclic, random, parallel, dynamic,
or other strategies. The choice of iteration order can impact
the convergence and performance of the system, and it is
important to consider the specific characteristics and con-
straints of the application when determining the appropriate
order.

B. Communication Protocol

DFL is a network framework for sharing model weights
based on the pointing, gossip, or broadcast protocol, with
the goal of obtaining optimal models across all clients.
Pointing is one of the simplest and most straightforward forms
of establishing a communication relationship between two
peers in a unidirectional, one-to-one, and specified form. The
algorithms of gossip and broadcast have been well established
for use in networks [142]. Gossip protocol is essentially a
random one-peer-to-one-peer way for clients to share, dis-
seminate, and learn knowledge in a stochastic communication
method [143], [144]. It is a standard communication protocol
in DFL and is already in its infancy [145], [146]. The broad-
cast protocol is a one-peer-to-all-peers approach that allows
the client to broadcast its model to all clients [147].

Hybrid protocols are now more popular, with differ-
ent gossip, broadcast, and their combined communication
structures designed for different scenarios and constraints.
Aysal et al. [148] proposed a method that combines gossip and
broadcast protocols and can be considered as a one-peer-to-
neighbor-peers approach, where the client first broadcasts to
its neighbors before gossiping. Bellet et al. [149] introduced an
algorithm that operates the agent asynchronously and performs
broadcast communication between similar clients with a focus
on obtaining personalized local models.

C. Network Topology

DFL networks are inspired by various network topologies,
as detailed in sources, such as [150], [151], [152], [153], and
[154]. Nedić et al. [142] highlighted and provided convergence
proofs for several network structures, including grid, star, and
fully connected topologies. Due to the absence of server-
based adaptation, management, and propagation constraints,
DFL networks exhibit a diverse range of configurations,
as illustrated in Fig. 4. Drawing from Graph FL concepts,
DFL networks can form a graph to represent structured
relationships, with clients as nodes and their connections
as edges. This graph-based approach in DFL enables the
quantification of dependencies between clients based on char-
acteristics, such as heterogeneity and communication patterns,
thus enhancing learning efficiency and model robustness. Note
that the depicted line segment indicates a connection between
clients, which can be either unidirectional or bidirectional.
The data transmitted between clients do not only comprise
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TABLE II
DEFINITIONS AND DESCRIPTIONS OF DFL TAXONOMY

(a)

(e) (f) (g)

(b) (c) (d)

Fig. 4. Illustration of communication network topology. (a) Line. (b) Ring.
(c) Mesh. (d) Star. (e) Bus. (f) Tree. (g) Hybrid.

their models, but may also include models from previous
interactions. In addition, the computational scope of each
client can encompass both local learning and aggregation.

For CFL, since all client models are hosted on the server,
aggregation (i.e., averaging of all model parameters) is the
mainstream and popular method for integrating knowledge
from all clients. However, for DFL, the situation is much more
complex. First, the network topology is diverse. There are
diverse network topologies in DFL. At each communication
round, clients may obey different protocols to transmit models
to one or more other clients. Second, there are different
versions of the model. Except for the synchronous DFL, there
must be different versions of the model for other DFLs. The
subsequent clients in the learning process will have models
that incorporate more knowledge compared to the previous
clients. Third, acquiring all client knowledge becomes more
challenging. Without a centralized server for collaborative
management, future clients face difficulties in accessing the
knowledge of all previous clients, except for the immediate
preceding clients, such as Fig. 4(a). Therefore, there is an

urgent need for an alternative paradigm to complement and
expand the FL landscape that is not well-compatible with
aggregation.

D. Paradigm Proposal

We introduce an innovative taxonomy of DFL into two
paradigms: 1) Continual and 2) Aggregate. The main
differences between these two paradigms lie in the number of
model updates exchanged between clients and whether aggre-
gation takes place. The distinction between the paradigms
also entails variations in other settings, such as learning
rates. The Aggregate paradigm represents the archetypal
FL algorithm, where each client receives the model from
other clients, aggregates these models, and subsequently con-
ducts local learning. Conversely, within the Continual
paradigm, each client receives the model from merely one
peer client and proceeds to learn directly based upon this
particular model. Continual learning [155], [156], or be called
incremental learning, provides a solid and grounded theory
for Continual. A number of concepts and algorithms
for federated continual learning are mentioned in the recent
literature [157], [158], [159], [160], which consider the process
of dynamic data collection in the real world while addressing
the issues of non-IID data, concept drift, and catastrophic
forgetting. In DFL, the role of continual learning is more
extensive.

1) The subsequent client will directly learn on the model
of the previous client. Compared to local learning
and Aggregate, the client is able to obtain a more
personalized model while saving communication, com-
putational, and storage resources.

2) In storage-constrained frameworks, clients do not need
to retain any additional model parameter data.
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TABLE III
PARADIGMS OF DFL

3) In computation-constrained frameworks, clients also do
not need to consume additional resources for aggregation
calculations.

4) The continuous generation of new data by clients is
accommodated, and they do not need to wait for all data
to be collected before starting the local learning process.

5) For tasks that may have concept drift, clients are always
provided with the latest version of the model.

Table III analyzes and summarizes the intrinsic, algorithm,
advantage, challenge, and network topology of these two
paradigms. The difference between these two paradigms is
illustrated by the example of sequential pointing line DFL. In
the Continual paradigm, the only content delivered to the
subsequent client is the trained model. The subsequent client
just continue learning on this model, as shown in Table III(a).
In the Aggregate paradigm, the previous client transmits not
only the trained local model but also all the previous models.
The learning process performed by the subsequent client is
divided into two parts, first aggregation and then learning, as
shown in Table III(b).

In order to compare and illustrate the difference between the
Continual and Aggregate paradigms, pointing, gossip,

and broadcast, and different network topologies. Algorithm 1
shows two paradigms in the sequential pointing line DFL
topology and Algorithm 2 shows pointing ring Continual
and broadcast mesh Aggregate DFL. The difference
between the Continual and Aggregate paradigms can
be clearly seen in the preprocessing of the client before
learning and the sharing of the model after learning. The
additional requirements of the Aggregate paradigm for
communication, computation, and storage have been high-
lighted. Under the Aggregate paradigm, the pointing and
gossip protocols require the client to send more model data
at once, while the broadcast and broadcast-gossip protocols
require the client to send at a higher frequency. The ring
topology can be seen as a cyclic variant of the line topology,
and both network topologies are widely used by researchers
due to their simple and straightforward structure. The line
topology is a sufficient knowledge learning system for systems
that do not generate new knowledge. However, in a system
that is constantly generating new knowledge, the ring topology
may be a more reasonable topology. It is not only able to
reupdate the knowledge in the system but also a feasible
solution to catastrophic forgetting.
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Fig. 5. Illustration of the two paradigms, Continual and Aggregate, for sequential pointing line DFL in the parameter space, showcasing their respective
learning and communication processes. The length of the arrow represents both the learning difficulty and the magnitude of the model parameters that undergo
changes during learning, which can be measured using the �2 norm. Shorter arrows are desired as they indicate more accessible, stable, and accurate model
learning and convergence. Excessively long arrows suggest that the given loss function and learning rate may not produce the desired model outcome.

Algorithm 1 Sequential Pointing Line Continual

and Pointing Line Aggregate Decentralized Federated
Learning

Input: Client set (C), training epoch (E), initial model (ω0), loss function
(L), learning rate (η)

Output: Local models ({ωc|c ∈ C})
for c ∈ C in sequence do

Copy the model from previous client ωc ← ωc−1

Aggregate received models ωc ← Aggregation{ω1, ω2, ..., ωc−1}
for e = 1 to E − 1 do

Backpropagate and update the local model ωe+1
c ← ωe

c − η∇L.
end for
Update the local model ωc ← ωE

c .
Client c sends {ω1, ω2, ..., ωc−1} and ωc to the next client.

end for

Algorithm 2 Cycle Pointing Ring Continual and

Broadcast Mesh Aggregate Decentralized Federated
Learning

Input: Client set (C), training epoch (E), initial model (ω0), loss function
(L), learning rate (η)

Output: Local models ({ωc|c ∈ C})
while c ∈ C in cyclic do � line versus ring

Copy the model from previous client ωc ← ωc−1

Aggregate received models ωc ← Aggregation{ω1, ω2, ..., ωc−1}
for e = 1 to E − 1 do

Backpropagate and update the local model ωe+1
c ← ωe

c − η∇L.
end for
Update the local model ωc ← ωE

c .
Client c sends ωc to the next client and all other clients .

� pointing versus broadcast
end while

To further illustrate the learning and communication process
among clients in these two paradigms, Fig. 5 demonstrates
the learning process from the first client to the final client in
the parameter space. It is important to note that we actually
have several assumptions here. First, the optimal solutions of
the local models of all clients follow a multivariate normal
distribution in the parameter space. Second, considering the
systemic and statistical heterogeneity, some clients exhibit

significant biases. Third, although reasonable loss functions
and learning rates are chosen, the models are not always
trained to achieve optimal solutions. The communication and
learning processes of the two paradigms, Continual and
Aggregate, are as follows.

Step 1) Both paradigms initiate learning with the same ini-
tial model parameters and obtain the same Model 1
in Client 1.

Step 2) Both paradigms learn from Model 1 and reach
the same Model 2 in Client 2. It is worth not-
ing that the Aggregate paradigm is meaningful
when there are two or more aggregated models
available.

Step 3) In the Continual paradigm, Client 3 learns
directly from Model 2 to obtain Model 3, while in
the Aggregate paradigm, Model 1 and Model 2
are first aggregated, and then Client 3 learns from
the aggregated model to obtain Model 3. Note that
the Continual paradigm is less complex than the
Aggregate paradigm, as indicated by the length
of the black arrow.

Step 4) In the Aggregate paradigm, the model aggre-
gated by Client 4 is closer to the center of the
Normal distribution than Client 3, so it is expected
that the learning process for subsequent clients will
be easier.

Step n) When the client is positioned toward the end of the
queue, the learning difficulty in the Continual
paradigm becomes random, depending on the devi-
ation between the previous client and the current
client. However, in the Aggregate paradigm, the
learning difficulty is only influenced by the current
client since the aggregated model is expected to
be extremely close to the center of the normal
distribution.

Based on the aforementioned assumptions and iterative
process, we can make certain expectations regarding the
accuracy, loss, convergence, and communication complexity
of the clients in both paradigms during training. We come up
with the following speculations.
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TABLE IV
SOME INSPIRING DFLS WITH DIFFERENT PROTOCOLS, TOPOLOGIES, PARADIGMS, AND VARIANTS

1) The learning loss will exhibit periodic oscillations
across client iterations and eventually converge in both
paradigms.

2) The convergence of learning loss in the Aggregate
paradigm is expected to be more stable. In the
Continual paradigm, the learning difficulty depends
on the discrepancy between the previous client and the
current client’s local data, in other words, it depends
on the iteration order of clients. Under the assumption
of a normal distribution, the learning difficulty in the
Aggregate paradigm is determined by the heterogene-
ity of the current client’s data, and most clients may
have similar data distributions.

3) The convergence of learning loss in the Aggregate
paradigm is also expected to be faster due to the
decreasing learning difficulty as the client iterations
progress. However, this acceleration in convergence is
accompanied by an increase in communication overhead.

4) The Continual paradigm requires more communi-
cation rounds to achieve convergence, whereas the

Aggregate paradigm incurs greater communication
overhead per round.

5) The Continual paradigm exhibits stronger personal-
ization, while the Aggregate paradigm demonstrates
greater generalization. Depending on scenario require-
ments, both paradigms can achieve similar performance
after convergence by adjusting weights.

E. Temporal Variability

The network topology of DFLs has recently undergone a
shift from static to dynamic trends, adapting to the time-
varying external environment [161]. The inspiration for the
separation and clustering of network topologies comes from
group behaviors observed in nature, such as fish schools
and bee swarms [162]. When a school of fish encounters a
predator, the entire school separates to avoid it. Similarly, in
a bee swarm, a small number of scouts can lead the entire
swarm, demonstrating the herd effect. Interestingly, migratory
birds form V-shaped formations during long-distance flights to
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conserve energy, and the birds at the front rotate over time to
distribute flight fatigue evenly. In the context of DFL networks,
dynamic topologies may exhibit more robust, fair, and efficient
performance compared to static topologies. The determination
of dynamic topologies in DFL networks can be influenced by
various factors, including the following.

1) External Interference: Strong and unbreakable commu-
nication barriers, SPoF, malicious attacks, and other
external factors can lead to changes in the network
topology. In order to avoid the failure of the entire
network, topology adjustments and discards are made.

2) Communication Resource Saving: Clients have the abil-
ity to dynamically select their neighbors for each
communication. By selectively choosing nearby clients,
communication resources can be optimized and saved.
Additionally, clients can dynamically elect the most
central client as a leader during each communication,
enhancing the efficiency and effectiveness of communi-
cation within the network.

3) Fairness: In order to ensure fairness among clients, a
random selection process is employed for determining
the communication target. This helps to prevent any
bias or preference toward specific clients, ensuring equal
opportunities for all participants.

The development of dynamic topological structures based
on these factors shapes DFL networks to facilitate robust,
efficient, and fair communication among clients.

IV. VARIANTS OF DECENTRALIZED

FEDERATED LEARNING

In Section III, we provide a comprehensive definition, intro-
duction, and propose two paradigm for DFLs. In this section,
we review the real-world applications in DFL, with a specific
focus on its diverse applications across various domains and
its real-world deployment. Taking inspiration from the CFL
variants and considering the underlying network topologies
depicted in Fig. 4, we propose several viable topology variants
for DFL. These topology variants serve as alternative options
for researchers to consider when deploying DFL. We discuss
the advantages and limitations associated with each variant,
enabling researchers to make informed decisions regarding the
most suitable topology for specific usage scenarios.

A. Real-World Applications

The development of a DFL framework relies on several
key factors, such as relevant application scenarios, sources
of information acquisition, information processing units, and
perceptual prediction modules, among others. With the estab-
lishment of the theoretical framework for networks, DFL
has been adopted in various application domains, including
vehicles, healthcare, industrial IoT (IIoT), social networks, etc.

1) Connected and automated vehicles serve as a robust
hardware infrastructure for DFL, leveraging onboard
batteries, diverse sensors, computing units, storage
devices, and more. Existing vehicle networking frame-
works, such as vehicle-to-vehicle (V2V), have also
laid the foundation for communication and networking

experiences in DFL for connected and automated vehi-
cle (CAV) [72], [174]. Referred to as V2V FL, this
approach enables the exchange and sharing of up-to-
date knowledge among vehicles and has been explored
in recent studies [175], [176], [177], [178], [179], [180],
[181], [182]. Lu et al. [183] proposed a vehicular
DFL approach with a focus on privacy protection and
mitigating data leakage risks in vehicular cyber–physical
systems (VCPSs). In their framework, roadside units
(RSUs) are responsible for forwarding vehicle identities,
vehicle data retrieval information, data profiles, data
sharing requests, and related tasks. Once the V2V
connection is established through the RSU intermediary,
the model data is directly transmitted to the requesting
vehicle.

2) Healthcare institutions are inclined toward DFL frame-
works over CFL due to their abundant patient privacy
data, computational resources, and storage capabilities.
As key stakeholders in healthcare institutions, clini-
cians play a crucial role in data collection, model
training, data analysis, characterization, and providing
experimental results and solutions. Unlike traditional
server-centric approaches, clinicians have the flexibility
to observe, analyze, fine-tune, and match models manu-
ally, offering more control and adaptability. Healthcare
institutions widely employ DFL frameworks in various
studies [61], [163], [164], [165], [166], [184], [185],
[186]. Warnat-Herresthal et al. [53] introduced a DFL
framework called Swarm Learning, which addresses four
use cases of heterogeneous diseases, including COVID-
19, tuberculosis, leukemia, and lung pathologies. This
framework incorporates a blockchain smart contract for
enhanced security and dynamically selects a leader for
aggregating model parameters in each iteration.

3) Industrial IoT, as a cornerstone of Industry 4.0, greatly
benefits from DFL, which offers robust and scal-
able solutions tailored to the complexities of modern
manufacturing environments [187], [188], [189]. IIoT
requires enhanced robustness, and DFL improves system
resistance to SPoF, which is particularly crucial for
devices on production lines [190]. The high autonomy
of DFL makes it well suited for industrial settings
with diverse physical conditions and operational envi-
ronments. Moreover, IIoT can rely on the scalability
of DFL to easily adapt to geographically dispersed
production sites and dynamically accommodate new
industrial devices into the DFL system. Du et al. [191]
designed a DFL framework for IIoT, where each client
exchanges model parameters only with neighbors using
a broadcast-gossip communication protocol to achieve
model consensus. To enhance the efficiency of the
gossip protocol and reduce communication overhead,
they also consider the topology of the entire client
network to facilitate asynchronous model exchanges
between clients.

4) Mobile services based on IoT devices provide a sig-
nificant application scenario for DFL, leveraging the
capabilities of smartphones, laptops, tablets, etc. These
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mobile IoT devices are equipped with various sen-
sors, such as global positioning system (GPS), inertial
measurement unit (IMU), cameras, sound sensors, and
magnetic sensors, enabling them to acquire diverse
sources of information. Unlike the relatively fixed con-
nectivity of CAVs, mobile IoT devices offer more
flexible systems and platforms to support a wide range
of applications. In recent studies, DFL frameworks have
been developed specifically for mobile IoT devices,
aiming to leverage their computational power and sensor
capabilities [192], [193]. While the traditional example
of CFL, such as Google mobile keyboard prediction,
is well-known [3], the transfer of such applications to
DFLs is of great interest. For instance, building DFLs
among individuals with similar professions, such as
doctors, lawyers, or engineers, can enable personalized
word recommendations tailored to their specific needs.
Belal et al. [194] developed a smartphone-based DFL
personalized recommendation system for New York City
attractions and movies. By sharing model parameters
with neighbors who have similar interests, the system
achieves higher hit rates and faster convergence, enhanc-
ing the recommendation accuracy and user experience.

5) UAVs and satellites, operating in dynamic computing
environments, possess vast amounts of sensitive data
for remote sensing, target recognition, and military-
related tasks, under the constraints of limited resources,
making them well suited for the advantages of
DFL [195], [196], [197]. For mobile UAVs and satel-
lites, bandwidth is a valuable resource. One potential
solution is that using a DFL framework based on
broadcast gossip tailored to dynamic geographic loca-
tions can significantly reduce bandwidth requirements
and the consumption of communication resources [64].
Moreover, due to their dynamic nature and highly
variable data, DFL can also enhance real-time respon-
siveness, adaptability, and efficiency of task execution.
Han et al. [198] proposed a DFL framework that
orchestrates satellite constellations, aggregating models
within a satellite cluster and relaying models to other
satellites via intersatellite links, particularly considering
the dynamic scenarios of low earth orbit satellites with
varying orbits.

6) Social networks, as large-scale knowledge graphs, con-
tain various users as nodes, content, and connections,
making DFL highly effective for handling a widely
dispersed and personalized user base, where each user
is connected only to their neighbors [199]. Use cases
in social networks include sentiment analysis, recom-
mendation systems, publication systems, and influence
analysis, among others [130], [200], [201]. Users in
social networks come from diverse backgrounds, such
as teachers and doctors, but may share common interests
in topics like comics, leading to frequent interactions.
The connections within and between user groups vary in
proximity, thus emphasizing the need for a personalized
and scalable DFL approach. Chen et al. [202] developed
a DFL framework for social networks that establishes

a user data structure with affine distributions. This
structure helps capture the heterogeneity among users
and reduces the loss associated with independently and
identically distributed data.

7) Artificial general intelligence, as one of the popular
research areas today, represented by large Language
models (LLMs) like ChatGPT, has the potential to
fundamentally change our lives [203]. The training of
these models relies on vast amounts of computational
resources and data, which can benefit from the collabo-
rative learning paradigm of DFL to facilitate cooperation
among different data centers [204], [205]. Unlike other
application areas discussed earlier, such as healthcare,
artificial general intelligence (AGI) models feature bil-
lions or even tens of billions of model parameters and
are intended for general use cases, not just confined
to a specific application. This poses unique challenges
for the application of DFL in AGI. Qin et al. [206]
proposed a method using FL for full-parameter fine-
tuning of billion-scale LLMs, employing zeroth-order
optimization with a random seed subset, reducing com-
munication requirements to just a few random seeds
and scalar gradients, totaling only a few thousand bytes.
Meanwhile, Gao et al. [207] only proposed a purely
theoretical design for decentralized LLMs. Therefore,
the use of DFL for AGI remains a nascent field requiring
further research [208].

B. Variant: Line

The base variant of DFL can be considered as a sequential
pointing line, depicted in Figs. 4(a) and 6(a). This topology
serves as the simplest and most straightforward illustration
and comparison in this article, as demonstrated in Table III(a)
and (b), and Algorithm 1. The line variant is frequently
used as a baseline for comparison due to its ease of imple-
mentation, intuitiveness, and efficiency [163], [164], [165],
[166]. However, it has notable limitations, such as the inabil-
ity to accommodate continuous learning of new knowledge
within the system, the risk of catastrophic forgetting in the
Continual paradigm, or redundant and excessive learning in
the Aggregate paradigm, as well as limited generalization
ability for starting clients and the vulnerability to an SPoF.
Furthermore, the line variant lacks cyclic connections, limiting
each client to a single iteration and preventing the system from
fully converging. In particular, in the line variant, the clients
at the front of the queue will have worse model performance.
Given its prominent disadvantages and advantages, it can serve
as a baseline or initial implementation for further research and
development.

C. Variant: Ring

The ring variant corresponds to the cycle pointing line
DFL, as depicted in Figs. 4(b) and 6(a). The cyclic form is
commonly used in DFL as the model needs to be trained
between clients to acquire new knowledge collected from
other clients, thereby enhancing generalization. Based on the
framework, not all past models need to be transferred for
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Fig. 6. Illustrations of imagined DFL network topologies in the real world. (a) Line/ring. (b) Mesh. (c) Star. (d) Hybrid. The red dots represent clients,
which can be universities, institutions, or organizations in some of the major cities in the world (determined by population). The blue lines depict the
communication network among these clients. Depending on the chosen topology, the communication networks exhibit different communication distances,
number of communication links, complexity, and other characteristics.

aggregation in each communication since many of them may
already be outdated. The ring variant not only inherits the
simplicity of the line variant but also becomes a popular
approach in various research papers due to its ability to iterate
indefinitely until convergence.

The ring topology is already considered mature in decen-
tralized learning [145], [209] and is beginning to gain traction
in DFL [210]. For example, Chang et al. [163] proposed two
heuristics for DFL, including sequential pointing communica-
tion on each client for one iteration and multiple iterations
to obtain the final model. Similarly, Sheller et al. [165] also
considered sequential pointing or cycle continual learning in
the client to generate the final model. Nguyen et al. [181]
applied cycle pointing DFL to autonomous driving applica-
tions. Yuan et al. [167] proposed a random ring topology
DFL framework, named FedPC, based on the gossip commu-
nication protocol for naturalistic driving action recognition.
FedPC emphasizes the highly dynamic, random, and data-
heterogeneous nature of vehicle connections in this context.

D. Variant: Mesh

A multidirectional ring, also known as a fully connected
topology, or be called mesh, is a variant of the ring basic
variant, depicted in Figs. 4(c) and 6(b). In the ring variant,
each client needs to transmit multiple model parameters in
each communication round, which can pose a burden on the
network bandwidth. In contrast, the mesh variant requires
each client to transmit its local model parameters to all other

clients in each communication round. This approach entails
higher communication frequency for the clients while also
reducing the size of model packets transmitted per com-
munication. The higher communication frequency and larger
per-communication data packet overhead have their respec-
tive advantages and disadvantages, which can be traded off
depending on the specific application context. However, when
compared to the ring variant, the mesh variant significantly
mitigates the impact of SPoF, which is a notable advantage of
this variant.

Recent research has witnessed the emergence of mesh-based
DFL approaches [61], [172], [180], [211]. Assran et al. [168]
proposed stochastic gradient push (SGP), a parallel broadcast-
gossip mesh DFL approach. In the broadcast-gossip iteration,
clients in SGP send their trained local models to a sparse
selection of other clients in a parallel manner, and they also
receive models from other selected clients. Each client then
performs a weighted aggregation of its local model with the
received models. Roy et al. [169] introduced the BrainTorrent
framework, in which a requesting client communicates with all
clients to obtain information about available model versions,
and clients with new versions send their models to the
requesting client for aggregation.

E. Variant: Star

The star variant resembles the CFL model, where one client
assumes the role of the server to coordinate and interact with
other clients, as depicted in Figs. 4(d) and 6(c). The star
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variant operates in two different modes. In the first mode,
similar to CFL, the central client is responsible for receiv-
ing, aggregating, and distributing the local models. However,
unlike CFL, the central client also generates original data
and utilizes the models for perception and decision-making.
This mode emphasizes a family-like relationship, where one
member has more computational and communication power
to assist the other clients. In the second mode of operation,
the focus is on geographic interoperability among clients. As
some clients in the community are geographically dispersed,
there is a client that serves as the geographical center for these
clients. To conserve communication resources, the surrounding
clients transmit their models to the central client, which then
forwards the models to the other clients.

Pappas et al. [170] introduced a split learning framework
within a star DFL architecture, where clients train different
layers of a model and update the model parameters with
the central client. This approach allows for distributed model
training and collaboration among clients. Another example
of a star variant is the Swarm Learning framework proposed
by Warnat-Herresthal et al. [53], which involves the dynamic
election of a leader to aggregate model parameters. In Swarm
Learning, the leader plays a central role in coordinating the
aggregation process and facilitating collaboration among the
clients.

F. Variant: Hybrid

The Hybrid variant of DFL encompasses a wide range
of configurations, combining elements from various other
variants. It is considered the most promising option for
practical applications due to its adaptability to different
scenarios [212], [213], [214]. However, the complexity of con-
figuring a hybrid variant can pose challenges. One example of
a hybrid variant, as depicted in Fig. 4(g), involves connecting
two ring variants through a central client. In this configuration,
the hybrid variant provides global connectivity, allowing for
the sharing of client models and knowledge within the frame-
work. The two ring variants can also be treated as a single
entity, with only one communication channel connected to the
two central clients. Another illustration of a hybrid variant,
shown in Fig. 6(d), involves dividing clients into organizations
based on geographical locations (e.g., continents). Within each
organization, a mesh topology network is established, and a
leader is elected. These leaders then form a ring topology
network among themselves. The hybrid variants do not have
a fixed structure and can be customized to meet the specific
requirements of real-world scenarios. The hybrid variant offers
several advantages.

First, the hybrid variant helps in saving communication
resources. This is achieved through the knowledge dissem-
ination between the leaders of two organizations, where
only the aggregated global model is shared. By transmitting
only the essential information, the hybrid variant reduces
the communication overhead. Additionally, organized knowl-
edge dissemination further enhances resource efficiency by
minimizing the sharing of irrelevant or invalid information.

This approach is particularly advantageous when establishing
communication between two geographically distant organi-
zations, as the single-line connection reduces the resource
requirements for long-distance communication. Considering
that the communication between organizations represents the
dissemination of knowledge across states, countries, and con-
tinents [215], the clients representing the institutions establish
a stable and well-structured communication connection to
facilitate the exchange of knowledge between their respective
organizations.

Second, the hybrid variant offers enhanced security. With
two central clients in control, they have the ability to unilat-
erally disconnect the communication between organizations,
ensuring the protection of their respective knowledge from
potential leaks or unauthorized access. This adds an extra layer
of security to the DFL system.

Third, the hybrid variant provides a more personal-
ized approach. Each organization’s aggregated model is
organization-specific, tailored to the unique characteristics
of its local data. This personalized model may offer better
applicability to the specific needs and requirements of the
organization. While model knowledge is shared between the
two organizations, the decision of whether to utilize the other
organization’s model is subject to further investigation and
discussion. By thoroughly assessing the performance of the
other organization’s model, clients can ensure that their own
model remains uncontaminated and unaffected by potentially
inferior or incompatible models.

Xing et al. [216] proposed a hybrid DFL network that
establishes connections only with neighboring clients, and
model parameters are broadcast-gossiped only among these
neighboring clients. Their approach takes into account various
factors, such as link blockages, channel fading, and mutual
interference, to ensure efficient and reliable communication.
Building upon this work, Shi et al. [171] further improved the
convergence performance by incorporating coding strategies,
gradient tracking, and variance reduction algorithms. In a
similar vein, Wang et al. [173] developed a dynamic hybrid
DFL framework called Matcha. Matcha introduces the concept
of creating different network topologies at each iteration to
enhance convergence speed. The algorithm consists of two
main parts. First, an initial network topology preprocessing
step where Matcha performs matching decomposition on a
base communication topology to obtain disjoint subgraphs,
including subgraphs with only two-peer connections. Next,
matching activation probabilities are computed to maximize
the connectivity of the graph, and a new random topol-
ogy graph is generated for each iteration. The key idea
behind Matcha is to achieve faster convergence by enabling
more frequent communication on connectivity-critical links
(e.g., central clients) and reducing communication latency
by decreasing the frequency of communication on other
connections. Matcha is particularly advantageous for hybrid
networks with unknown or dynamic central clients. However,
it may not exhibit the same advantages in scenarios involving
research institutions where central clients are known and
predetermined.
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V. CHALLENGE AND POTENTIAL SOLUTIONS IN DFL

Based on the current SOTA technology, this section aims to
discuss and analyze potential challenges and future research
directions for DFL. Additionally, the variants mentioned in
Section IV can be regarded as potential solutions to address
these challenges.

A. High Communication Overhead

DFL is widely recognized as an extremely communica-
tion resource-efficient approach compared to CFL. However,
researchers are still striving for further savings in communica-
tion resources and reduced communication complexity [217].
We discuss the existing CFL frameworks in Section II-B,
and we consider introducing viable methods to achieve effi-
cient communication in DFL. Wang et al. [218] introduced
a method called optimization of topology construction and
model compression (CoCo) that aims to improve communica-
tion efficiency and convergence speed in DFL. CoCo achieves
this by employing adaptive techniques for constructing the
DFL network topology and assigning an appropriate model
compression ratio to each participating client. It achieves this
by adaptively constructing the DFL network topology and
assigning an appropriate model compression ratio to each
client.

In addition to model compression, it is also important
to investigate how to leverage efficient communication lines
and reduce the overall communication length. Variants, such
as star and hybrid variants, which select geocentric clients
and resource-rich clients as leaders, have been proven to
be effective solutions in this regard. Some researchers have
also focused on addressing the bandwidth differences among
different communication lines [219], [220]. It is worth noting
that the dynamic hybrid variant proposed by Wang et al. [173]
emphasizes the importance of communication efficiency and
suggests frequent communication with key clients to achieve
faster convergence. A considerable body of research empha-
sizes the importance of efficient communication in DFL and
proposes various strategies and methods to reduce complexity
and optimize communication resources. Further exploration in
this direction is expected to facilitate the potential deployment
of DFL frameworks in real-world applications.

B. Computational and Storage Burden

Compared to the CFL and Continual paradigm, the
Aggregate paradigm imposes significantly higher demands
on client-side computational and storage resources. As there
is no dedicated server in the Aggregate paradigm, clients
are responsible for storing previous model parameters and
performing aggregation computations alongside local model
training. Consequently, the computational and storage burdens
pose challenges for client hardware.

One potential solution is to adopt the transfer learning
concept and fix the weights of the lower layers in all models.
In this approach, the lower layers serve as feature extractors for
a specific task and are expected to be similar across models,
while the higher-level representations remain task-specific. By
fixing these parameters, there is no need for gradient descent,

aggregation computations, or communication-related to these
layers. Moreover, this approach reduces storage requirements,
thereby substantially mitigating the resource consumption
of the client. Currently, with the widespread availability of
high-performance GPU computing resources, the challenges
related to computational and storage burdens are gradually
diminishing. This is especially true in DFL scenarios where
institutions and organizations serve as clients. However, in
contexts, such as mobile services dominated by smartphones
and on-board units in vehicular edge devices, there is still
value in researching ways to reduce computational complexity
and optimize storage efficiency.

C. Vulnerability in Cybersecurity

Network security has always been a major challenge in FL,
and this challenge is particularly prominent in DFL [221],
[222], [223], [224]. In the traditional CFL setting, clients
communicate with a central server, typically operated by a
research institution or a large commercial organization. While
there is still potential for attacks and data poisoning between
clients and the server, communication is generally more regu-
lated and protected compared to DFL. In DFL, the knowledge
exchange occurs directly among users within a local area
network, with free and unrestricted sharing agreements, which
poses an increased risk of privacy exposure. Malicious attacks
from clients, poisoned data, free-riding attacks, and other
malicious behaviors are all possible in this decentralized
setting [225], [226].

Kuo and Ohno-Machado [227] proposed the integration
of blockchain into a decentralized learning framework to
enhance privacy protection, which can also be applied to DFL.
Chen et al. [228] integrated a differential privacy mechanism
based on blockchain technology. Bellet et al. [149] introduced
an asynchronous and differential privacy algorithm in DFL
to safeguard user privacy. He et al. [50] addressed trust
issues between clients by employing an online push-sum
algorithm to actively push local models to trusted clients.
Shayan et al. [229] proposed the Biscotti DFL system, which
incorporates multiple privacy and security protection tech-
niques, including the multi-Krum defense to prevent poisoning
attacks, differential privacy noise to protect privacy, and secure
aggregation. The future research direction in cybersecurity
will involve the roles of attackers and defenders, focusing
on developing targeted attack and defense mechanisms for
different DFL variants.

D. Lack of Incentive Mechanism

In the absence of server management, the issue of fairness in
aggregation has been effectively addressed in DFL. However,
the lack of incentives and mutual distrust among clients can
significantly impact their willingness to contribute knowledge.
A key issue is the lack of incentives, which may lead to free-
riding attacks where clients choose to benefit from the models
without contributing their own knowledge [68], [230].

In the context of DFL, the feasibility of incentive mecha-
nisms based on game theory, such as Stackelberg games [231],
raises questions due to the requirements on game leaders,
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participants, and rewards. One potential solution could be the
integration of reputation-based incentive mechanisms using
blockchain and smart contracts. Kang et al. [105] proposed
assigning reputation scores to clients to represent and quantify
their reliability. Clients with higher contributions and reputa-
tions can receive greater rewards. However, designing effective
and practical incentive mechanisms for DFL remains an open
problem.

In cases where task providers do not exist or there are no
explicit rewards, punitive incentives may also be a potential
solution. Clients who fail to contribute or engage in malicious
behavior could face penalties or reduced access to the benefits
of the DFL framework. Further research is needed to explore
and develop robust incentive mechanisms tailored specifically
for DFL systems. Designing effective incentive mechanisms
to encourage active participation, foster trust, and stimulate
enthusiastic knowledge sharing will greatly facilitate the
dissemination of knowledge in DFL.

E. Lack of Management

In DFL, the absence of a central server for managing
all clients poses a significant challenge in receiving and
sharing knowledge in an organized manner. The lack of
central management can lead to confusion, particularly among
clients with varying sample sizes, computational resources,
and communication capabilities. In the ring variant, a client
only needs to wait for the model parameters from the previous
client, while in the mesh variant, a client needs to wait for
model parameters from all other clients. Such dependencies on
other clients for model transmission can result in deadlocks,
causing the entire system to halt. Moreover, the commu-
nication among clients may not be robust, considering the
possibility of SPoF. The absence of management is particularly
problematic in the hybrid variant depicted in Fig. 6(d), where
clients communicate globally. The lack of management can
lead to reduced operational efficiency, confusion regarding
model versions, and performance degradation.

To address the challenge of lack of management in DFL,
researchers have proposed several approaches. One approach
is to prerequest the status of other clients, such as their
model versions, before initiating knowledge transfer [169].
By obtaining accurate information, a client can then request
the transfer of the entire model data. Some star variants
enforce the knowledge dissemination flow among clients by
designating a leader [178]. This leader is responsible for
regulating knowledge dissemination among the remaining
clients. Additionally, Chen et al. [179] introduced the BDFL
framework, a mesh DFL framework specifically designed for
autonomous vehicles. In this framework, a leader is randomly
selected in each communication round, offering advantages,
such as increased privacy and security protection against
Byzantine faults, as well as enhanced management through
the leader’s command issuance. In real-world scenarios, clients
may face challenges where they lack knowledge about each
other’s statuses, leading to issues, such as model version
discrepancies and even system paralysis, such as in the case of
an SPoF. Therefore, future research directions aim to ensure

the smooth operation of the system by incorporating additional
information or establishing contingency plans. These measures
can help mitigate the impact of uncertainty and improve the
reliability and robustness of the DFL framework.

VI. CONCLUSION

In this article, we provided an extensive exploration of the
DFL framework, covering communication protocols, network
topologies, paradigm proposals, extension variants, challenges,
and potential solutions. Our aim is to offer a comprehensive,
well-defined, and systematic perspective that organizes and
synthesizes the existing literature and definitions, thereby
facilitating a comprehensive introduction to DFL for new
researchers. Given that DFL is a rapidly evolving area, we
established a solid theoretical foundation by defining and
discussing five variants in this article. This not only provides
researchers with a comprehensive understanding of the field
but also fosters the generation of new ideas and collaborations
among peers.

It is important to note that our approach differs from
traditional surveys, as we presented our own insights and
innovative thinking on DFL. Moreover, this article uncovers
a considerable number of previously unexplored types within
the DFL framework. For example, no existing studies have
demonstrated the integration of the Continual paradigm
with mesh network topology. Researchers might consider
asynchronous DFL, where clients acquire data and learn at dif-
ferent times, thus benefiting from the dual advantages offered
by the Continual paradigm and the mesh network topology,
such as reduced communication overhead, personalization,
and more. By considering diverse usage scenarios, we aim
to stimulate and extend the research interest of other DFL
practitioners, enabling them to adapt the framework to their
specific needs.
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“FedMFS: Federated multimodal fusion learning with selective modal-
ity communication,” 2023, arXiv:2310.07048.

[19] D. Shi, L. Li, R. Chen, P. Prakash, M. Pan, and Y. Fang, “Toward
energy-efficient federated learning over 5G+ mobile devices,” IEEE
Wireless Commun., vol. 29, no. 5, pp. 44–51, Oct. 2022.

[20] B. Pfitzner, N. Steckhan, and B. Arnrich, “Federated learning in a
medical context: A systematic literature review,” ACM Trans. Internet
Technol., vol. 21, no. 2, pp. 1–31, 2021.

[21] D. C. Nguyen et al., “Federated learning for smart healthcare: A
survey,” ACM Comput. Surv., vol. 55, no. 3, pp. 1–37, 2022.

[22] J. Li et al., “A federated learning based privacy-preserving smart
healthcare system,” IEEE Trans. Ind. Informat., vol. 18, no. 3,
pp. 2021–2031, Mar. 2022.

[23] J. C. Jiang, B. Kantarci, S. Oktug, and T. Soyata, “Federated learning
in smart city sensing: Challenges and opportunities,” Sensors, vol. 20,
no. 21, p. 6230, 2020.

[24] Z. Yang, M. Chen, K.-K. Wong, H. V. Poor, and S. Cui,
“Federated learning for 6G: Applications, challenges, and opportuni-
ties,” Engineering, vol. 8, pp. 33–41, Jan. 2022.

[25] V. P. Chellapandi, Y. Nagaraj, J. Supplee, S. Hernandez-Gonzalez,
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