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Motivation for Federated Learning for CAVs

* CAVs generate massive amounts of raw data, between 20 and 40 TB per day, per
vehicle from various sources such as engine components, electronic control units
(ECU), perception sensors, and vehicle-to-everything (V2X) communications

* Not feasible to have a secure framework to collect this large amount of data from
every vehicle and train an ML model. This led to the development of a new ML
paradigm known as Federated Learning (FL)

* In FL, edge devices/clients only send the learnable parameters to cloud servers
rather than sending massive local datasets in a centralized learning framework

* Cloud servers perform secure aggregation of the received parameters and update
the global model parameters that are transmitted back to the vehicles
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Centralized vs Decentralized FL

COMPARISON OF MACHINE LEARNING APPROACHES IN CONNECTED AND AUTOMATED VEHICLES

Centralized Learning
(On-Server only)

Edge Learning
(On-Vehicle only)

Features

Centralized
Federated Learning

Decentralized
Federated Learning

Model training Local vehicle Central server

Local vehicle training and
central server aggregation

Local vehicle training and
aggregation

Model applicability Personalized model Single global model

Single global model but can

Global models and personal-

In the CFL paradigm, model parameters
are transmitted to a central server for

Sending local model
Receiving global model

aggregation
DFL relies on a consensus among the
vehicles, fostering collaboration to

collectively update global parameters
without the need for a central server

(a) Centralized FL for CAVs

be personalized ized models

Privacy protection vV X v

Learning efficiency v Vv v
Performance on heterogeneous/anomaly data 'L ' v
Communication (Data transmission) requirement v X X

Training data volume X 'L ' v

Current research progress v e X
Compatibility with CAV v X v v

v Very high, v high, = average, X low.
Secure aggregation

(b) Decentralized FL for CAVs
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Data Modalities

Latitude
Longitude
Heading

LiDAR
e 3D point cloud
2 e Intensity GNSS
- e Reflectance
e Distance o
e RGB
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4 e Range
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e Direction
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Vehicle Status

Speed
Acceleration
Steering Angle
Engine RPM
Temperature

Energy Level
Mileage

Tire Pressure
Door Status
Turn Signal




Applications — In-Vehicle Human Monitoring

- Ability to enhance driver safety and personalization of assistance systems while
preserving individual privacy by training ML models locally on each vehicle's data
without sharing sensitive information centrally

(a) StateFarm

(b) AICity
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Applications — Steering Wheel Angle Prediction

* Ability to collectively train accurate and personalized models across a fleet of
vehicles without sharing sensitive data, enhancing overall safety and performance

[ Left camera ’ ‘Center camera] [Right camera

Steering wheel angle
(via CAN bus)

External solid-state
drive for data storage

NVIDIA DRIVE™ PX
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Applications - Vehicle Trajectory Prediction

* Capacity to collaboratively improve prediction accuracy and enhances
generalizability across a network of vehicles while maintaining data privacy and
security, leading to safer and more efficient transportation systems
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Applications - Object Detection in Vehicles

* Collectively train and improve detection models using decentralized data from
multiple vehicles, enhancinglearning, safety and accuracy while preserving

data privacy
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Challenges of FL4CAV

Massively paralle]l CAVs
Datasets, simulators, pre-
trained models

Model accuracy

o Suitability evaluation

(@)
560

e Capability diagnostics
Resource utilization

Challenges and
Future
Directions

e Vehicle selection and

o\
resource allocation e ' e Privacy and security
. . ) . . . y
o Catastrophic forgetting =) ‘ e Fairness and incentives

e System heterogeneity
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