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Abstract— Connected and Automated Vehicles (CAVs) rep-
resent a rapidly growing technology in the automotive domain
sector, offering promising solutions to address challenges such
as traffic accidents, congestion, and pollution. By leveraging
CAVs, we have the opportunity to create a transportation
system that is safe, efficient, and environmentally sustainable.
Machine learning-based methods are widely used in CAVs
for crucial tasks like perception, planning, and control, where
machine learning models in CAVs are solely trained with the
local vehicle data, and the performance is not certain when
exposed to new environments or unseen conditions. Federated
learning (FL) is a decentralized machine learning approach that
enables multiple vehicles to develop a collaborative model in
a distributed learning framework. FL enables CAVs to learn
from a broad range of driving environments and improve
their overall performances while ensuring the privacy and
security of local vehicle data. In this paper, we review the
progress accomplished by researchers in applying FL to CAVs.
A broader view of various data modalities and algorithms
that have been implemented on CAVs is provided. Specific
applications of FL are reviewed in detail, and an analysis of
research challenges is presented.

I. INTRODUCTION

Connected and automated vehicles (CAVs) are the key
to future intelligent transport systems. With the advent of
big data, the Internet of things (IoT), edge computing, and
intelligent systems, CAVs have the potential to improve the
efficiency of the overall transportation system, and reduce
traffic accidents, congestion, and pollution. Robust network
communication and significantly increased internet speed are
expected to be guaranteed with the onset of advanced com-
munication infrastructures. Currently, CAVs are generating a
tremendous amount of raw data, up to one to two terabytes
per vehicle per day [1] from various sources like engine
components, electronic control units (ECU), perception sen-
sors, and vehicle-to-everything (V2X) communications. This
large amount of data is sent to the cloud continuously or
periodically for monitoring, prognostics, diagnostics, and
connectivity features [2]. These data are also private and
come under strict privacy protection regulations in various
regions. One such example is the General Data Protection
Regulation (GDPR) in the European Union [3]. Even with
the development of advanced machine learning (ML) tech-
niques and vehicle connectivity, it has not been feasible to
have a centralized framework to collect data from every
vehicle and train an ML model securely. These limitations
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led to the development of a new ML paradigm known as
Federated Learning (FL) [4], [5].

FL is a new technology breakthrough that has been ac-
tively implemented in several application domains. FL has
been coined by Google [6] and was initially used for mobile
keyboard prediction in Gboard [7] to allow multiple mobile
phones to cooperatively and securely train a neural network
(NN) model. In FL, the edge devices/clients only send the
gradients or the learnable parameters to the cloud server
rather than sending massive local datasets in a Centralized
Learning (CL) framework. The cloud server performs a
secure aggregation [8] of the received gradients/weights and
updates the global model parameters that are transmitted
back to the clients/edge devices. This procedure, known as a
communication round, continues iteratively until the conver-
gence criteria are met in the global model optimization. The
key advantage of FL is reducing the strain on the network
while also preserving the privacy of the local data. FL is a
potential candidate that can utilize the data available from
each CAV and develop a robust ML model.

In this survey, we provide a comprehensive survey of FL
for CAV (FL4CAV), including diverse applications and key
challenges. The FLACAV concept is illustrated in Fig. 1.

Despite the mutual benefits of connectivity between vehi-
cles, the issues of invasion of privacy, accuracy, effectiveness,
and communication resources are essential problems to be
addressed. FL frameworks have received attentions for their
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Fig. 1. Federated learning for CAV (FL4CAV).
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TABLE I
COMPARISON OF ML APPROACHES IN CONNECTED AND AUTOMATED VEHICLES

Features
only)

Edge Learning (On-Vehicle

Centralized Learning Federated Learning

Model training Local vehicle

Local vehicle training and
central server aggregation

Central server

Model applicability Personalized model

Single global model Single global model but can be

personalized
Privacy protection 4 XX v
Learning efficiency X v 4
Performance on heterogeneous/anomaly data X 54 v
Communication (Data transmission) requirement | v/ XX X
Training data volume XX 4 v
Current research progress 4 4 X
Compatibility with CAVs v XX Ve

v/ best, v high, X Tow, XX worst.

natural ability to preserve privacy by transmitting only model
data between the server and its clients without including
local vehicle data. In particular, the model data packets are
smaller than the user data, thus saving the consumption
of communication resources. Recently there have also been
efforts on training decentralized FL that allows multiple
vehicles to collaboratively train a model without needing a
central server [9], [10].

After a review of data modality, data security and algo-
rithms in CAV, this survey focus on most of the critical appli-
cations of FL4ACAYV, such as steering wheel angle prediction,
vehicle trajectory prediction, object detection, motion control
application, and driver monitoring. This survey also high-
lights the current challenges and future research directions
of FLACAV. A detailed comparison of the on-device vehicle
training, CL, and FL approach is described in Table I.

The remainder of this paper is organized as follows:
Section II highlights the diverse data modalities, data secu-
rities, and algorithms of FL in CAVs. Section III reviews
the application of FL in CAVs with detailed examples.
The multi-modal data, algorithms, and datasets used in the
relevant literature are also summarized. Current challenges
are discussed in Section IV and Section V presents the
conclusion of this study and outlines future work.

II. OVERVIEW OF DATA MODALITIES, DATA SECURITIES
AND ALGORITHMS

Each CAV as a client, undertakes sensing data acquisition,
signal processing, storage, communication, perception, and
decision-making. For sensing data acquisition, a variety of
sensors are integrated into CAVs, including Global Naviga-
tion Satellite Systems (GNSS), multi-modal cameras, Radio
Detection And Ranging (RADAR), Light Detection And
Ranging (LiDAR), and Inertial Measurement Unit (IMU) to
capture the vehicle, driver, passenger, and external informa-
tion.

The tasks for CAVs are also diversified, including target
speed tracking, behavior prediction, object detection, driver
monitoring, and more. After training on an ML models with
local data, clients send the trained model to the server.

Then, the server shares a generalized model with clients
for perception, prediction, and decision-making purposes.
The FLACAV framework shows a trend towards multi-modal
sensing data, massively parallel clients, and multi-class tasks.
Recent efforts have been conducted to understand the appli-
cability and challenges of implementing FL. to CAVs [11]-
[15]. A detailed overview of the data modalities of CAVs,
data security, and FL algorithm is presented below.

A. Data Modality

CAVs collect multi-modal data from various sensors to
conduct tasks, such as navigation, perception, and etc. The
FL training process involves vehicles that may have a differ-
ent variety of sensors. The data collected by sensors depend
on the sensor type, the sensor’s range, the accuracy/precision
of the sensor, sensor placement, and the operating environ-
ment. The operating environment, such as snow, heavy rain,
or fog, can reduce the sensor visibility, thereby deteriorating
the data quality. These factors lead to variations that can sig-
nificantly affect the sensor performance. The performance of
the FL model is directly dependent on the quality of the data
collected by vehicles. The data resolution, size, sampling
rate, etc., obtained from CAVs are generally heterogeneous,
and processing the data is also a challenging task. Hence a
detailed review is presented to understand the various data
modalities in FLACAV applications.

Images, especially visible RGB images, are one of the
most important data modalities for CAVs. Vision-related
tasks such as steering wheel angle prediction III-B, Traffic
sign recognition [16], semantic segmentation [17], object de-
tection III-D, and driver monitoring [18] use images captured
by the camera as the data source. In most applications, a
variant of the Convolutional Neural Network (CNN) model
is trained to achieve the intended functionality. However, due
to its intrusive design, privacy issues are always criticized
for image-based systems, especially for in-cabin, and driver-
related applications [18]-[21]. FL focuses on the model
parameters and ignores the data, which addresses the draw-
back that visual image-based systems tend to compromise
user privacy. Moreover, FL also solves the data transmission
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problem caused by the inflated data size of images and
videos, leading to a more efficient learning framework.

LiDAR data provides a solid foundation for autonomous
driving capabilities. LiDAR data have also been utilized
for object detection tasks [22]-[24]. LiDAR generates 3D
point clouds that can detect objects accurately even under
adverse weather conditions, unlike cameras that are not
robust. However, the dense point cloud of LiDAR data makes
transmission a daunting task. Therefore, compared with the
image-based FL systems, the system of FL for LiDAR data is
more interested in improving learning efficiency and saving
communication resources.

Vehicle status data such as vehicle position, velocity,
acceleration, throttle/brake command and other vehicle pa-
rameters are also an important part of the CAV data modality,
which reflects more about the vehicle rather than external
information. These data can reveal sensitive information
about the driver’s location, habits, and behaviour that could
potentially compromise their privacy and security. FL. pro-
vides the best solution that could address these privacy
concerns while utilizing these data for improving several
applications such as collision avoidance [25], vehicle tra-
jectory prediction III-C, and motion control application III-
E. Techniques such as Recurrent Neural Networks (RNN),
Transformer and Reinforcement Learning (RL) are generally
used for training these time-series data.

B. Data Security

Robust and secure privacy-preserving techniques are es-
sential for protecting sensitive data during the FL process
for CAVs. It is demonstrated that the FL process can still be
vulnerable to various malicious attacks, such as when one or
more participants are compromised, and they could transmit
false parameters to hinder the global model performance. The
FL central server is also prone to attack and thereby causing
the entire learning process to collapse [26].

Homomorphic Encryption, Secure Multi-Party Computa-
tion, Differential Privacy, and Blockchain-based techniques
are few of the widely employed methods for preserving
privacy in FLACAVs. These approaches aim to maintain and
minimize the trade-offs between model performance and data
privacy thereby ensuring the data security while enabling
effective model performance.

Differential Privacy (DP) is a widely used approach that
safeguards data privacy by injecting random noise into
the data before transmitting it to the server, preventing
unauthorized extraction of sensitive information. Another
disruptive technology gaining traction in CAV applications
is blockchain-based methods, leveraging the decentralized
and tamper-resistant nature of blockchain to enhance data
integrity, transparency, and security [27]-[33]. Blockchain
is a type of digital ledger technology that securely transfer
data in a decentralized framework. Data from CAVs share
their data with the vehicular network, and the information is
stored on the blockchain. The system is designed to protect

data privacy and data security as well as to provide higher
security to the overall vehicular networks engaged in the
learning process [34]. A detailed analysis of various privacy
preservation approaches is presented in [35].

C. Federated Learning Algorithm

Most of the existing literature uses the FedAvg algo-
rithm [6] for the FL aggregation process in the server—
see Table II. FedAvg applies Stochastic Gradient Descent
(SGD) optimization on local vehicles and does a weighted
averaging of the weights from the vehicles in the central
server. FedAvg performs multiple local gradient updates
before sending the parameters to the server, reducing the
number of communication rounds. For FL4CAV, data on
each CAVs are dynamically updated at each communication
round—see Algorithm 1.

Algorithm 1 FedAvg for Dynamic Data Updating CAVs

Input: Vehicle set V, communication rounds 7, isolated time-
varying local dataset £ = {ff,t) : v € V}, local epochs E,
learning rate 7, loss function f

Output: Aggregated global model w

1: Initialize wo
2: fort=0,...,7T—1do
3:  Perform local SGD for vehicle v € V in parallel do

4 Sample £, compute g := %fv(wgt), ff))

s: wi ) — wl? —ngl? = SGD (E epochs)
6: end for o

7w Y S (wit) = FedAvg

8: end for

9: Output the aggregated global model w <« w™

Data heterogeneity, client drift, and data imbalance from
clients have proved to significantly impact the performance
of FedAvg optimization resulting in unstable convergence.
The data obtained from CAVs are typically non-independent
and identically distributed (non-I1ID). There is a need to
develop an FL framework that could perform well with the
varying data distribution from CAVs. FedProx [36] algorithm
combines FedAvg with a proximal term to improve conver-
gence and reduce communication cost. Fed-ADAM [37] has
shown improved convergence and optimization performance
by incorporating ADAM optimization in FedAvg algorithm.
Dynamic Federated Proximal (DFP) algorithm is an exten-
sion of the Federated Proximal Algorithm (FPA) that can
effectively deal with non-iid data distribution by dynamically
varying the learning rate and regularization coefficient during
the learning process [38]. Federated Distillation (FD) [39]
uses knowledge distillation to transfer knowledge in a de-
centralized manner leading to a significant reduction in the
communication size compared to a traditional FL and also
can have the ability to handle non-iid data samples [40].
There have been efforts to address the client heterogeneity,
and it is an ongoing research area [41]-[44].
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TABLE 11
LITERATURE OVERVIEW OF FL APPLICATION TO CAVS

Literature | Time | Data Modality Application Base Model FL Algorithm Dataset
[45] 2020 | Time series data of | Turn signal prediction LSTM FedAvg Ford’s Big Data Drive [45]
multiple features
from sensors
[46] 2020 | Time series - Traffic | Traffic flow prediction GRU FedAvg Caltrans Performance Mea-
flow surement System (PeMS)
dataset [47]
[48] 2021 RGB image Steering angle prediction Two-stream CNN Async FL Self-collected
[49] 2021 RGB image Steering angle prediction Self-defined CNN | FedAvg Self-collected
[22] 2021 RGB image and Li- | Object detection YOLO CNN FedSGD Canadian Adverse Driving
DAR Conditions Dataset [50]
[51] 2021 Trajectory data Vehicle cooperative posi- | MLP FedVCP Didi Chuxing GAIA Initia-
tioning tive [52]
[53] 2021 RGB image Traffic sign recognition CNN TFL-CNN BelgiumTS [54]
[55] 2021 Traffic accident data Traffic accident prediction | MLP Dynamic FL Eco- | 1.6 million UK traffic acci-
nomic Framework | dents [56]
[38] 2022 | RGB image and tra- | Target speed tracking Self-defined NN DFP (FedAvg for | Berkeley deep drive [57]
jectory data aggregation) and dataset of annotated car
trajectories [58]
[16] 2022 | RGB image Traffic sign recognition LeNet-5 FedAvg German Traffic Sign Recog-
nition Benchmark [59]
[17] 2022 | Multi-modal image Semantic Segmentation BiSeNet V2 FedAvg + Variants | Cityscapes [60] and IDDA
[61]
[23] 2022 RGB image and Li- | 3D object detection U-Net HFCL  (FedAvg | Lyft Level 5 dataset [62]
DAR for aggregation)
[63] 2022 | Vehicle position, ve- | Trajectory prediction LSTM FedAvg+Variants US-101 and I-80 data sets
locity and accelera- of NGSIM [64]
tion + Driver behav-
ior
[25] 2022 | Vehicle position, ve- | Collision avoidance Deep RL SFRL (FedAvg for | Self-generated
locity and accelera- aggregation)
tion
[20] 2022 | RGB image Driver activity recognition | ResNet-56 FedGKT State Farm  Distracted
Driver Detection [65] and
Al City Challenge 2022
[66]
[67] 2022 Time series - Vehicle Traffic flow prediction LSTM FedNTP CRAWDAD Vehicular
speed dataset [68]
[69] 2022 | RGB image Driver activity recognition | ResNetl8 Efficient State Farm  Distracted
hierarchical Driver Detection [65] and
asynchronous FL | YawDD [70]
(EHAFL)
[18] 2023 RGB image Driver activity recognition | ResNet-34 FedProx + Vari- | State Farm  Distracted
ants Driver Detection [65] and
Drive&Act [71]
[21] 2023 RGB image Driver fatigue detection Bayesian CNN FedSup Blinking Video Database
[72] and Eyeblink8 [73]

III. APPLICATIONS OF FL FOR CAV

This section reviews a few important applications in detail
of FL in CAVs. The FL4CAV literature, including data
modalities, underlying models, applications, and datasets,
are highlighted in Table II. Different applications on CAV
are highly dependent on different strengths of FL, such as
protecting privacy, improving learning efficiency, enhancing
generalization ability, reducing communication overhead,
etc.

A. In-Vehicle Human Monitoring

FL has the potential to enhance the security of user data
on board, while enabling knowledge transfer and ensuring
the generalization ability of the model. However, in human-
related applications where data is highly heterogeneous and

personalized, it can be challenging to balance the general-
ization ability of the model with the need for personalization
to specific users [74].

Driver monitoring applications, such as distraction detec-
tion, are critical safety features that monitor the driver’s
steadiness and alertness, and warn the distracted driver to
apply safety-critical actions [20], [21]. Driver privacy may
be a bigger concern than steering wheel angle prediction
and object recognition, leading to FL’s ability to be more
highlighted in terms of privacy protection. However, the
driver monitoring application is a highly personalized ap-
plication where the driver’s behavior is strongly associated
with personal habits, emotions, cultural background, and
even the interpretation of instructions. For human-related
applications like driver monitoring, personalized FL is the
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dominant solution [18].

Passenger monitoring applications are an emerging re-
search area that involves detecting passenger intents of
boarding and alighting and warning of dangerous behavior
in public transportation [75]. However, this field has not yet
received much attention due to the lack of available datasets
and the difficulty of monitoring multiple users simultane-
ously. Nevertheless, the ability of FL to integrate knowledge
about public transportation and the growing demand for
passenger monitoring makes it a promising application in
this area.

B. Steering Wheel Angle Prediction

Steering wheel angle prediction needs to adapt for dif-
ferent driving and environment conditions and thus requires
continuous model updates for high accuracy. FL provides
these opportunities by combining several vehicles to col-
laboratively learn from new data and update the model in
relatively short time. FL offers the benefit of continuous and
collaborative learning, low communication overhead and data
security that is needed to develop a robust prediction model.
The steering wheel angle is predicted from the RGB images
collected from the front-facing camera as input, which can
be further trained by a CNN model. [76], [77]. Related
literature has demonstrated that FL can collaboratively train
the prediction model at a significantly lower communication
cost while also preserving privacy and achieving similar
performance as centralized learning [48], [49], [78].

C. Vehicle Trajectory Prediction

A robust vehicle trajectory prediction allows CAVs to
perform proper motion planning as well anticipate poten-
tially dangerous behaviors of other vehicles, such as sudden
lane change, skidding, or hard braking, in order to react
proactively and prevent accidents [79]. This is a challenging
task and would requires substantial amounts of vehicle data
for training a model. FLL proves to be viable solution that
provides a collaborative learning framework with multiple
vehicles while keeping the sensitive local data private and
secure. It has been reported that the FL approach achieves a
similar performance over centralized learning [63], [80].

FL models are trained on diverse data from various
vehicles operating in different scenarios. This enhances the
model’s generalization and enables autonomous vehicles to
handle rare events like traffic accidents, adverse weather, and
risky behaviors. Additionally, the FL framework supports
continuous learning and model updating, allowing quick
adaptation to dynamic traffic, road conditions, and unfamiliar
scenarios.

D. Object Detection

Object detection is one of the main functions of the visual
perception system intended to detect and localize objects
using sensor data such as LiDAR and high resolution im-
age/video. These data are large in size and sensitive in nature.

As aresult, there are limitations to deploying robust detection
models on a traditional centralized learning approach due to
privacy and communication overhead. These concerns can
be mitigated through the use of a FL-based approach for
CAVs. FL can effectively help CAVs detect diverse objects
in different driving scenarios, road types, traffic conditions,
and weather types. FL enables the CAV framework to
learn efficiently with low communication overhead, which is
particularly advantageous when the volume of data is much
larger than the size of the model while also ensuring the
privacy of the data.

FL has already been in practice much before for com-
puter vision-related tasks such as developing safety hazard
warning solutions in smart city applications [81]. Object
detection accuracy generally struggles under adverse weather
circumstances such as snow. It has demonstrated that the
CNN-FL framework improves the detection accuracy and
performs better than the centralized and gossip decentralized
models [22]. Recently there have been numerous studies to
improve the performance of FL on complex tasks like object
detection [82]. A hybrid federated and centralized learning
(HFCL) framework was proposed that allows vehicles with
computational resources to be part of the FL training process
while the others transmit their local data to the server like
a centralized learning process. The trade-off between the
computational and communication overhead of the vehicles
is addressed. The performance of HFCL is not shown to be
better than a centralized learning approach in this example
[23] and is a subject for further research and improvement. It
is demonstrated that with multi-stage resource allocation and
robust device selection, the performance of FL significantly
improved compared to traditional centralized learning and
baseline FL approaches [83].

E. Motion Control Application

FL approach enables CAVs to train and optimize controller
parameters collaboratively. A few potential benefits are en-
abling CAVs to adapt to unseen routes/traffic scenarios or
operating conditions because of past data from other CAVs,
on-ramp acceleration, driving in congested traffic scenarios,
and so on. FL enables CAVs to quickly adapt to different
driving scenarios, including unfamiliar and unvisited roads,
cities, and countries. Additionally, FL. may enable CAVs
to adjust driving styles based on different driving habits,
climates, scenarios, and cultural norms.

FL offers significant benefits in enabling CAVs to swiftly
adapt to changing driving environments, thereby enhancing
safety, comfort, energy efficiency, and overall driving expe-
rience. FL has been employed to dynamically update control
parameters, resulting in improved target speed achievement
with enhanced driver comfort and safety [38]. Additionally,
FL finds application in optimizing control parameters col-
laboratively across CAVs at traffic intersections, leading to
collision avoidance and improved driving comfort [84].
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IV. FUTURE CHALLENGES

In this section, we review various challenges in the state-
of-the-art technology and the future scope of research.

A. Resource Limitations

1) Massively parallel CAVs raise questions about col-
laboration capabilities, management, and resources: Huge
CAVs participation in FL could increase the solve time,
memory utilization, and therefore the computational power
for the global model update. In particular, the vision-related
perception tasks have concerns such as high communication
costs and not being flexible towards heterogeneous datasets.
Decentralized FL and Clustered FL [85] are also being
explored to reduce the communication overhead.

2) Lack of sufficient real-world datasets, simulators, and
pre-trained base models: There is a need for more real-world
datasets (different weather conditions and traffic scenarios),
realistic high-fidelity FLACAV simulators for seamless FL
integration [83], and good pre-training models. Federated
transfer learning is a new approach that has been adopted
to improve the model performance, and accuracy [18], [31].

B. Imperfect Methodology

1) Privacy and security issues: Massive data also leads
to privacy and security concerns. This problem must be
addressed to train the ML model efficiently without com-
promising on the model’s accuracy and redundancy.

2) Lack of robust approach for vehicle selection and re-
source allocation: Currently, there is no popular mechanism
that can select non-redundant data from CAVs to minimize
the network strain. There are ongoing efforts to develop
robust methods to select vehicles and resource allocation
schemes [86]—-[88]. In [89], the overall training process was
demonstrated to be efficient due to incorporating a client
selection model. The setup looks at the resource availability
of the clients and then determines the clients eligible to be
part of the FL global model learning process. In [80], it is
demonstrated that the model performance was improved with
CAVs that were selected by a trust-based deep reinforcement.

3) Catastrophic forgetting: CAVs cannot keep all user
data due to storage capacity limitations, and new data will
always be generated during iteration. Therefore, when the
FL framework is updated on new data in iteration—see Al-
gorithm 1, the global model forgets the previous knowledge
and leads to catastrophic forgetting.

4) Lack of robust fairness and incentive mechanism:
There is a need for a robust rewarding mechanism, since
the amount of information shared by CAVs is different and
highly inconsistent (Data imbalance). There needs to be a fair
incentive mechanism to reward CAVs for their contributions.

C. Inadequate Evaluation Criteria

1) FL suitability evaluation for new users: It is often
difficult for the newcomer vehicle to make any informed
decisions. In [80], a trust-aware Deep RL model is proposed

to assist new vehicles in making superior trajectory and
motion planning decisions.

2) Need for high capability diagnostics: There are several
noise factors that could influence the decision of the FL, such
as faulty sensors in a visual perception case and incorrect
imputation of missing data. The development of a robust
diagnostic that can identify and eliminate the updates from
these vehicles is needed.

V. CONCLUSION

In summary, FL is a new technology that has started to
be applied in the CAV domain. This paper reviews various
developments, data modalities, and algorithms of FL4CAV,
and provides a broad list of applications of FL in CAVs.

We observe that FL4CAVs also presents unique chal-
lenges such as ensuring data integrity, addressing commu-
nication latency, managing heterogeneous data sources, and
maintaining model synchronization across different vehicles.
However, with proper design and implementation, FL can
offer significant advantages in terms of privacy preservation,
network efficiency, and collaborative intelligence for CAVs.

Further promising applications of FL in energy-efficient
modeling, cooperative driving, anomaly detection, and pre-
dictive maintenance hold significant potential for enhancing
the performance, safety, and efficiency of CAV systems. With
the support of cloud infrastructure, 5G, and V2X technology,
the adoption of FL models is expected to drive substantial
advancements in the CAV domain, leading to an efficient,
safe, and intelligent transportation system.
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